@Diligence

FUZZING SCRIBBLE ABOUT

Tokenize It

1 Executive Summary

2 Scope

2.1 Objectives

3 Security Specification
3.1 Actors

3.2 Trust Model
4 Findings

4.1 Limiting the Price in the buy
and onTokenTransfer Functions

Medium v Fixed

4.2 Potential Re-Entrancy Attack
inthe Crowdinvesting Contract

m v Fixed

4.3 Lack of Validation of
PrivateOffer Initialization

Parameters (I3 | ¢ Fixed

4.4 Lack of Validation of
Crowdinvesting Initialization

Parameters [[I\) | ¢ Fixed

4.5 Keeping Denominators of Fees

Is Redundant | v Fixed

4.6 Non-Normalized Salt
Computation | v Fixed

4.7 Unused or Redundant Imports
in Multiple Contracts | v Fixed

4.8 Missing Events on Important
State Changes | ¢ Fixed

4.9 DynamicPricingActivated

Event Is Emitted Twice | ¢ Fixed

Appendix 1 - Files in Scope

Appendix 2 - Disclosure
A.2.1 Purpose of Reports

A.2.2 Links to Other Web Sites
from This Web Site

A.2.3 Timeliness of Content

Date December 2023

Sergii K henko,
Auditors ergii .ravc e’n o)
Francois Legué

1 Executive Summary

This report presents the results of our engagement with Tokenize It to review the Tokenize It smart contracts.

The review was conducted over three weeks, from November 20th, 2023 to December 8th, 2023, by Sergii Kravchenko and
Francois Legué. A total of 5 person-weeks were spent on this audit.

The Tokenize It platform helps companies create and issue or sell tokens that grant economic rights to the token holder. This
platform can be used to:

e create an ERC20 token that grants participation rights in the company to the token holders;
e raise funds through public or private offers;

e give employees participation (directly or through a vesting plan).

The platform serves as an intermediate and facilitates the deployment of contracts and the verification of the requirements for
the token sender and the token receiver.

2 Scope

Our review focused on the commit hash 9973fc31043e8500bc187d852fc50494f1007f96. The list of files in scope can be found in
the Appendix.

During the audit, some changes and fixes were made, and the final codebase has the following commit hash:
19bd32b835ff24ff2c7dect70adbd8ac5968a931.

2.1 Objectives
Together with the Tokenize It team, we identified the following priorities for our review:

1. Correctness of the implementation, consistent with the intended functionality and without unintended edge cases.

2. Identify known vulnerabilities particular to smart contract systems, as outlined in our Smart Contract Best Practices, and the
Smart Contract Weakness Classification Registry.

3. Cloning and initialization functionality works as expected.
4. Permission checks while transferring tokens work as intended.

5. Vesting commitments work as expected.

3 Security Specification

This section describes, from a security perspective, the expected behavior of the system under audit. It is not a substitute for
documentation. The purpose of this section is to identify specific security properties that were validated by the audit team.

3.1 Actors

The relevant actors are listed below with their respective abilities:

e Tokenize It team. Manages the infrastructure required to run correctly, including the frontend enabling users to deploy
contracts. The team manages the allowList contracts that help attest address attributes (KYCed, nationality, age, etc.).
Tokenize It team controls the reesettings contract which manages the fees paid to the Tokenize It platform.

e Company or founder. Creates a token that represents participation rights in the company. Determines how the tokens can be
emitted (through public fundraising, private investing or giving tokens to employees)

e Investor. Buys tokens of a company through a public or private fundraising / offer.

e Employee. Works for a company and receives tokens as part of their compensation.

3.2 Trust Model

In any system, it's important to identify what trust is expected/required between various actors. For this audit, we established the
following trust model:

e Tokenize It team. The team is trusted in attesting and inserting attributes associated with addresses in the allowList contract.
The team is also in charge of legally validating the companies and founders that want to create a token.

e Company or founder. The company owner or founder who wants to emit tokens is trusted to operate correctly. The central
component of the Tokenize It project is the Token contract. It is owned by the company owner or founder. It is worth noting
that this contract can be upgraded and its logic modified.

https://github.com/corpus-io/tokenize.it-smart-contracts/tree/9973fc31043e8500bc187d852fc50494f1007f96
https://github.com/corpus-io/tokenize.it-smart-contracts/tree/19bd32b835ff24ff2c7decf70adbd8ac5968a931
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/
https://consensys.net/diligence/
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

4 Findings
Each issue has an assigned severity:

o ([issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

e Medium iSsues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

e [issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

. issues are directly exploitable security vulnerabilities that need to be fixed.

4] Limiting the Price inthe buy and onTokenTransfer Functions wedium (Ve

Resolution

Fixed here for the buy function by adding a _maxcurrencyamount variable check. It is also mitigated in the onTokenTransfer
function. But since you cannot add an extra argument to this function, the minimal token amount is optionally added to the
_data parameter. This parameter became a bit complicated and remains optional. So, the result of the direct token transfer
with an empty _data can theoretically be manipulated by the owner.

Description

When an investor tries to buy the tokens in the crowdinvesting contract, the buy function does not allow to limit the amount of
tokens that can be spent during this particular transaction:

contracts/Crowdinvesting.sol:L277-L279

function buy(uint256 _amount, address _tokenReceiver) public whenNotPaused nonReentrant {

uint256 currencyAmount = Math.ceilDiv(_amount * getPrice(), 10 ** token.decimals());

The owner of the price oracle can front-run the transaction and twist the price.

Of course, the buyer can try to regulate that limit with the token allowance, but there may be some exceptions. Sometimes, users
want to give more allowance and buy in multiple transactions over time. Or even give an infinite allowance (not recommended)
out of convenience.

The same issue can be found in the ontokentransfer function. This function works differently because the amount of currency is
fixed, and the amount of tokens minted is undefined. Because of that, limiting the allowance won't help, so the user doesn’t know
how many tokens can be bought.

Recommendation

It's recommended to explicitly limit the amount of tokens that can be transferred from the buyer for the buy function. And allow
users to define a minimal amount of tokens bought in the onTokentransfer function.

4.2 Potential Re-Entrancy Attack in the Crowdinvesting Contract czm Ve

Resolution

Fixed by storing the currency early in the function to the memory and reusing that value.

Description
The attack requires a set of pre-requisites:

1. The currency token should have a re-entrancy opportunity inside the token transfer.

2. The re-entrancy can be done on a token transfer from the _msgsender() to the feecollector , SO there are not a lot of attackers
who can potentially execute it.

3. The owner should be involved in the attack, so it’s most likely an attack by the owner.

contracts/Crowdinvesting.sol:L277-L290

function buy(uint256 _amount, address _tokenReceiver) public whenNotPaused nonReentrant {
uint256 currencyAmount = Math.ceilDiv(_amount * getPrice(), 10 ** token.decimals());
(uint256 fee, address feeCollector) = _getFeeAndFeeReceiver (currencyAmount) ;
if (fee !'=0) {
currency.safeTransferFrom(_msgSender(), feeCollector, fee);

}

currency.safeTransferFrom(_msgSender(), currencyReceiver, currencyAmount - fee);
_checkAndDeliver(_amount, _tokenReceiver);

emit TokensBought(_msgSender(), _amount, currencyAmount);

https://github.com/corpus-io/tokenize.it-smart-contracts/blob/19bd32b835ff24ff2c7decf70adbd8ac5968a931/contracts/Crowdinvesting.sol#L293
https://github.com/corpus-io/tokenize.it-smart-contracts/blob/19bd32b835ff24ff2c7decf70adbd8ac5968a931/contracts/Crowdinvesting.sol#L328-L338
https://github.com/corpus-io/tokenize.it-smart-contracts/blob/19bd32b835ff24ff2c7decf70adbd8ac5968a931/contracts/Crowdinvesting.sol#L295

So on the token transfer to the feecollector above, the currency parameter can be changed by the owner . And the following token
transfer (currency.safeTransferFrom(_msgSender (), currencyReceiver, currencyAmount - fee);) will be made in a different currency.

A possible scenario of the attack could look as follows:

1. Malicious owner sells tokens for a valuable currency. People are placing allowance for the tokens.
2. The owner changes the currency to a new one with a much lower price and re-entrancy during transfer.
3. When a victim wants to buy tokens, the owner reenters on fee transfer and returns the old currency.

4. The victim transfers the updated currency that is more expensive.

Recommendation

Save the currency in memory at the beginning of the function and use it further.

4.3 Lack of Validation of PrivateOffer Initialization Parameters g (Ve

Resolution

Addressed by adding extra validation of the parameters.

Description

The rprivateoffer contract allows to create a customised deal for a specific investor. The initialize() function receives parameters
to set up the privateoffer accordingly.

The following parameters lack of validation during initialization:

® tokenAmount
® token

® currency
tokenAmount

contracts/PrivateOffer.sol:L81-L84

uint256 currencyAmount = Math.ceilDiv(
_arguments.tokenAmount * _arguments.tokenPrice,
10 ** _arguments.token.decimals()

tokenAmount IS Not validated at all. It should be verified to be greater than zero.
token
token IS not validated at all. It should be verified to be different than zero address.

currency

currency 1S not validated at all. The documentation mentions a restricted list of supported currencies. It should be enforced by
checking this parameter against a whitelist of currency addresses.

Recommendation

Enhance the validation of the following parameters: tokenAmount , token , currency .

4.4 Lack of Validation of Crowdinvesting Initialization Parameters grm (Ve

Resolution

Mitigated by adding extra validation.

Description

The crowdinvesting contract allows everyone who meets the requirements to buy tokens at a fixed price. The initialize() function
receives parameters to set up the crowdinvesting accordingly.

The following parameters lack of validation during initialization:

® tokenPrice
® minAmountPerBuyer
® lastBuyDate

® currency

tokenPrice

contracts/Crowdinvesting.sol:L160

require(_arguments.tokenPrice != @, "_tokenPrice needs to be a non-zero amount");

https://github.com/corpus-io/tokenize.it-smart-contracts/blob/19bd32b835ff24ff2c7decf70adbd8ac5968a931/contracts/PrivateOffer.sol#L73-L84
https://github.com/corpus-io/tokenize.it-smart-contracts/blob/19bd32b835ff24ff2c7decf70adbd8ac5968a931/contracts/Crowdinvesting.sol#L151-L169

tokenPrice IS checked to be different to zero. It should be verified to be in between pricemin and pricemax When these parameters
are provided.

minAmountPerBuyer

contracts/Crowdinvesting.sol:L156-L159

require(
_arguments.minAmountPerBuyer <= _arguments.maxAmountPerBuyer,
"_minAmountPerBuyer needs to be smaller or equal to _maxAmountPerBuyer"

);

minAmountPerBuyer iS checked to be below or equal to maxamountperBuyer . It should be verified to not be zero.

lastBuyDate

contracts/Crowdinvesting.sol:L172

lastBuyDate = _arguments.lastBuyDate;

lastBuyDate IS Not validated at all. It should be verified to be greater than the current bilock.timestamp . Currently, a crowdinvesting
contract with 1astBuypate parameter set to a value (different than zero) below biock.timestamp Will not be able to sell any token.

contracts/Crowdinvesting.sol:L249-L265

function _checkAndDeliver(uint256 _amount, address _tokenReceiver) internal ({
require(tokensSold + _amount <= maxAmountOfTokenToBeSold, "Not enough tokens to sell left");
require(tokensBought[_tokenReceiver] + _amount >= minAmountPerBuyer, "Buyer needs to buy at least minAmount");
require(
tokensBought[_tokenReceiver] + _amount <= maxAmountPerBuyer,
"Total amount of bought tokens needs to be lower than or equal to maxAmount"

)

if (lastBuyDate !'= @ && block.timestamp > lastBuyDate) {
revert("Last buy date has passed: not selling tokens anymore.");

tokensSold += _amount;
tokensBought[_tokenReceiver] += _amount;

token.mint(_tokenReceiver, _amount);

currency

contracts/Crowdinvesting.sol:L154

require(address(_arguments.currency) != address(@), "currency can not be zero address");

currency IS checked to be different than zero. The documentation mentions a restricted list of supported currencies. It should be
enforced by checking this parameter against a whitelist of currency addresses.

Recommendation

Enhance the validation of the foIIowing parameters: tokenPrice , tokenPrice , lastBuyDate , currency .

4.5 Keeping Denominators of Fees Is Redundant (v

Resolution

Addressed by major code refactoring of the Feesettings contract.

Description

All the fees are stored as numerators and denominators. That requires storing two numbers instead of just one. That solution
increases code size and makes a comparison of two different values more complicated:

../Jcode-a3/contracts/FeeSettings.sol:L264-L269

defaultTokenFeeNumerator = proposedDefaultFees.tokenFeeNumerator;
defaultTokenFeeDenominator = proposedDefaultFees.tokenFeeDenominator;
defaultCrowdinvestingFeeNumerator = proposedDefaultFees.crowdinvestingFeeNumerator;
defaultCrowdinvestingFeeDenominator = proposedDefaultFees.crowdinvestingFeeDenominator;
defaultPrivateOfferFeeNumerator = proposedDefaultFees.privateOfferFeeNumerator;
defaultPrivateOfferFeeDenominator = proposedDefaultFees.privateOfferFeeDenominator;

..Jcode-a3/contracts/FeeSettings.sol:L306-L313

https://github.com/corpus-io/tokenize.it-smart-contracts/blob/19bd32b835ff24ff2c7decf70adbd8ac5968a931/contracts/FeeSettings.sol

function _isFractionAGreater(
uint32 aNumerator,
uint32 aDenominator,
uint32 bNumerator,
uint32 bDenominator
) internal pure returns (bool) {
return uint256(aNumerator) * bDenominator > uint256(bNumerator) * aDenominator;

}

Recommendation

Instead, the common practice is to fix the denominator for all values as a constant, for example, 10e5. That would keep the code
simpler, shorter, and cheaper.

4.6 Non-Normalized Salt Computation [vrie

Resolution

Addressed by using abi.encode .

Description

The deployment of new contracts (crowdinvesting , Pricelinear , Privateoffer and vesting) relies on the cloning and create2 features.
The create2 opcode gives the ability to predict the address of a contract given its bytecode, the address of the deployer and a
salt.

Currently, the salt is computed doing a keccak2s6 hash of encoded parameters that will define the characteristics of the contract
to be deployed. However, the encoding method is not consistent across different contracts.

CrowdinvestingCloneFactory salt computation is based on abi.encode encoding of parameters

contracts/factories/CrowdinvestingCloneFactory.sol:L62-L69

function _getSalt(
bytes32 _rawSalt,
address _trustedForwarder,
CrowdinvestingInitializerArguments memory _arguments
) internal pure returns (bytes32) {
return keccak256(abi.encode(_rawSalt, _trustedForwarder, _arguments));

}

PriceLinearCloneFactory salt computation is based on abi.encodePacked encoding of parameters

contracts/factories/PriceLinearCloneFactory.sol:L122-L147

function _generateSalt(
bytes32 _rawSalt,
address _trustedForwarder,
address _owner,
uint64 _slopeEnumerator,
uint64 _slopeDenominator,
uint64 _startTimeOrBlockNumber,
uint32 _stepDuration,
bool _isBlockBased,
bool _isRising
) internal pure returns (bytes32) {
return
keccak256 (
abi.encodePacked(
_rawSalt,
_trustedForwarder,
_owner,
_slopeEnumerator,
_slopeDenominator,
_startTimeOrBlockNumber,
_stepDuration,
_isBlockBased,
_isRising

PrivateOfferFactory salt computation is based on abi.encode encoding of parameters

contracts/factories/PrivateOfferFactory.sol:L170-L182

function _getSalt(
bytes32 _rawSalt,
PrivateOfferArguments calldata _arguments,
uint64 _vestingStart,
uint64 _vestingCliff,
uint64 _vestingDuration,
address _vestingContractOwner
) private pure returns (bytes32) {
return
keccak256 (
abi.encode(_rawSalt, _arguments, _vestingStart, _vestingCliff, _vestingDuration, _vestingContractOwner)

)

TokenFactory salt computation is based on abi.encodePacked encoding of parameters

contracts/factories/TokenProxyFactory.sol:L125-L148

function _getSalt(
bytes32 _rawSalt,
address _trustedForwarder,
IFeeSettingsV2 _feeSettings,
address _admin,
AllowList _allowlList,
uint256 _requirements,
string memory _name,
string memory _symbol
) private pure returns (bytes32) {
return
keccak256 (
abi.encodePacked(
_rawSalt,
_trustedForwarder,
_feeSettings,
_admin,
_allowlList,
_requirements,
_name,
_symbol

VestingCloneFactory salt computation is based on abi.encodePacked encoding of parameters

contracts/factories/VestingCloneFactory.sol:L31

bytes32 salt = keccak256(abi.encodePacked(_rawSalt, _trustedForwarder, _owner, _token));

Recommendation

Normalize the computation of the salt that will be used along with create2 feature. Note, as a reminder, that it is preferable to use
abi.encode in order to prevent any potential hash collisions when encoding dynamic types variables.

4.7 Unused or Redundant Imports in Multiple Contracts (e

Resolution

Fixed.

Description

Multiple contracts import unused or redundant libraries.
PrivateOffer

contracts/PrivateOffer.sol:L4

import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol”;

PricelLinear

contracts/PriceLinear.sol:L6

import "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol";

VestingCloneFactory

contracts/factories/VestingCloneFactory.sol:L7

import "@openzeppelin/contracts/proxy/Clones.sol";

PrivateOfferFactory

contracts/factories/PrivateOfferFactory.sol:L4-L5

import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol”;
import "@openzeppelin/contracts/utils/math/SafeCast.sol";

PricelLinearCloneFactory

contracts/factories/PriceLinearCloneFactory.sol:L7

import "@openzeppelin/contracts/proxy/Clones.sol”;

CrowdinvestingCloneFactory.sol

contracts/factories/CrowdinvestingCloneFactory.sol:L7

import "@openzeppelin/contracts/proxy/Clones.sol”;

Recommendation

Remove unused or redundant imports.

4.8 Missing Events on Important State Changes (v

Resolution

Events added.

Description

The setLastBuybate() function from crowdinvesting contract updates the 1astBuypate state variable without emitting an event.

setLastBuyDate()

contracts/Crowdinvesting.sol:L390-L393

function setlLastBuyDate(uint256 _lastBuyDate) external onlyOwner whenPaused {
lastBuyDate = _lastBuyDate;
coolDownStart = block.timestamp;

Recommendation

Emit an event on important state change.

4.9 DynamicPricingActivated Eventls Emitted Twice e

Resolution

Fixed.

Description

The DynamicPricingActivated(address,uint256,uint256) event is emitted twice when activating the dynamic price feature.
DynamicPricingActivated

contracts/Crowdinvesting.sol:L186-L212

https://github.com/corpus-io/tokenize.it-smart-contracts/blob/19bd32b835ff24ff2c7decf70adbd8ac5968a931/contracts/Crowdinvesting.sol#L431
https://github.com/corpus-io/tokenize.it-smart-contracts/blob/19bd32b835ff24ff2c7decf70adbd8ac5968a931/contracts/Crowdinvesting.sol#L191-L198

function activateDynamicPricing(
IPriceDynamic _priceOracle,
uint256 _priceMin,
uint256 _priceMax
) external onlyOwner whenPaused {
_activateDynamicPricing(_priceOracle, _priceMin, _priceMax);
coolDownStart = block.timestamp;
emit DynamicPricingActivated(address(_priceOracle), _priceMin, _priceMax);

function _activateDynamicPricing(IPriceDynamic _priceOracle, uint256 _priceMin, uint256 _priceMax) internal {

require(address(_priceOracle) != address(@), "_priceOracle can not be zero address");
priceOracle = _priceOracle;

require(_priceMin <= priceBase, "priceMin needs to be smaller or equal to priceBase");
priceMin = _priceMin;

require(priceBase <= _priceMax, "priceMax needs to be larger or equal to priceBase");
priceMax = _priceMax;

coolDownStart = block.timestamp;

emit DynamicPricingActivated(address(_priceOracle), _priceMin, _priceMax);

Recommendation

Remove bDynamicPricingActivated event emitted in the activatebdynamicPricing() function.

Appendix 1 - Files in Scope

This audit covered the following files:

File

contracts/AllowList.sol
contracts/Crowdinvesting.sol
contracts/FeeSettings.sol
contracts/PriceLinear.sol
contracts/PrivateOffer.sol

contracts/Token.sol

contracts/Vesting.sol
contracts/factories/CloneFactory.sol
contracts/factories/CrowdinvestingCloneFactory.sol
contracts/factories/Factory.sol
contracts/factories/PriceLinearCloneFactory.sol
contracts/factories/PrivateOfferFactory.sol
contracts/factories/ TokenProxyFactory.sol
contracts/factories/VestingCloneFactory.sol
contracts/interfaces/IFeeSettings.sol

contracts/interfaces/IPriceDynamic.sol

SHA-1 hash

766f10f387c4c2ada81edbed6eaa3214al4bdeb?
d21eb87948cf5d391050200b9ced55a05d759¢78
6977c2542990472b6dc4ba8e61cB8f7200e4cf03
bfbb2c3864bf99f0ebBb56a066f10ed262dd289f
cd046028a956313e01a3f70cc806b871ee0B8a8b2
01c8969df1f4c3fa71d4e3e33b6eBc22aal753e4
049afb346463c1270c3d9de65ef288d73c891327
94ee64e1052eb9caabe6a3ddb9755f202520de01
38465e3ea22dcc400c4d70b28d64dd9078af4797
67dd11155cb1bcf3a7f68ba57a15db13a8269775
599549e59e206ea61ec55cc7f1a7b21ea9a49829
d84fadcc440b9206d15b06db1c0ad85875b235715
b5f968ba31c5de5c50edf63c22884e39dad7c4e3
5413e9e1057c0304a8aa3755b8577549930c 082
d4268e7e9dbc233f75041¢c14c5¢18862b778930F

243a304b240a2944481770427977c0a15d68813e

Appendix 2 - Disclosure

Consensys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via Consensys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any third party in any respect, including regarding the bug-free nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any third party by virtue of publishing these Reports.

A.2.1 Purpose of Reports

The Reports and the analysis described therein are created solely for Clients and published with their consent. The scope of our
review is limited to a review of code and only the code we note as being within the scope of our review within this report. Any
Solidity code itself presents unique and unquantifiable risks as the Solidity language itself remains under development and is
subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond specified code

that could present security risks. Cryptographic tokens are emergent technologies and carry with them high levels of technical
risk and uncertainty. In some instances, we may perform penetration testing or infrastructure assessments depending on the
scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

A.2.2 Links to Other Web Sites from This Web Site

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Consensys and CD.
Such hyperlinks are provided for your reference and convenience only, and are the exclusive responsibility of such web sites’
owners. You agree that Consensys and CD are not responsible for the content or operation of such Web sites, and that Consensys
and CD shall have no liability to you or any other person or entity for the use of third party Web sites. Except as described below,
a hyperlink from this web Site to another web site does not imply or mean that Consensys and CD endorses the content on that
Web site or the operator or operations of that site. You are solely responsible for determining the extent to which you may use
any content at any other web sites to which you link from the Reports. Consensys and CD assumes no responsibility for the use of
third-party software on the Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

A.2.3 Timeliness of Content

The content contained in the Reports is current as of the date appearing on the Report and is subject to change without notice
unless indicated otherwise, by Consensys and CD.

POWERED BY c consensys

https://consensys.io/

