
Connext NXTP — Noncustodial Xchain
Transfer Protocol

Date July 2021

Auditors
Martin Ortner, David Oz
Kashi, Heiko Fisch

1 Executive Summary
This report presents the results of our engagement with Connext to review their
NXTP protocol for crosschain transfers.

The review was conducted over two weeks, from July 26 to August 6, 2021, by Heiko Fisch, David Oz Kashi, and Martin Ortner.
A total of 25 person-days were spent. The off-chain code components were reviewed on a best effort basis considering the given
time constraints.

During the �irst week, we focused on both the on-chain components of the system and the router (TypeScript) component.
During the second week, we continued to focus on the on-chain components and inspected the sdk (TypeScript) component.

From August 30 to September 3, 2021, a revised version of the contract code (0656436d), has been reviewed by Heiko Fisch, and
the report has been updated accordingly. The critical (4.1) and major (4.3) contract issues found during the original audit have
been �ixed, but a new major issue (4.2) has been introduced.

In November 2021, the client has asked us to publicize the report. Meanwhile, the code had undergone some changes since the
revised version that was reviewed in August/September (0656436d). In particular, the Connext team claims to have �ixed issues
4.2 and 4.14. We have not reviewed these �ixes or any changes to the codebase after 0656436d .

1.1 Scope

Our initial review focused on the commit hash 494d07d3707df91658de45e2177a79adc80cf5fe , and the revised version has commit hash
0656436d654cfe0313fa3c2bbc81aa86232ade16 . The “Resolution” text boxes were added in the August/September review and pertain to the

revised version (0656436d) unless indicated otherwise (as in 4.2 and the last paragraph of 4.14). The list of �iles in scope can be
found in the Appendix.

2 System Overview

3 Security Speci�ication
This section outlines the system’s actors and roles and describes some risks, responsibilities, and trust assumptions that are
consequences of its design.

3.1 Actors

The relevant actors are listed below with their respective abilities:

Users (actors that are willing to swap cross-chain assets)
deposit the asset to be swapped

withdraw the target asset

cancel a swap request

Routers
add liquidity to facilitate future swaps

remove liquidity

deposit the asset to be swapped

1 Executive Summary

1.1 Scope

2 System Overview

3 Security Speci�ication

3.1 Actors

3.2 Risks, responsibilities, and
trust assumptions for users,
routers, and relayers

4 Findings

4.1 TransactionManager - User
might steal router’s locked funds

Critical ✓ Fixed

4.2 TransactionManager -
Receiver-side check also on
sending side Major
✓ Unveri�ied Fix

4.3 TransactionManager - Flawed
shares arithmetic Major
✓ Fixed

4.4 Router -
handleMetaTxRequest - gas
grie�ing / race conditions /
missing validations / free meta
transactions Major

4.5 Router - subgraphLoop may
process transactions the router
was not con�igured for (code
fragility) Major

4.6 Router - handler reports an
error condition but continues
execution instead of aborting it

Major

4.7 Router - spawns
unauthenticated admin API
endpoint listening on all
interfaces Major

4.8 TODO comments should be
resolved Medium

4.9 TransactionManager - Missing
nonReentrant modi�ier on

removeLiquidity Medium

✓ Fixed

4.10 TransactionManager -
Relayer may use user’s cancel
after expiry signature to steal
user’s funds by colluding with a
router Medium Acknowledged

4.11 Router -
handleSenderPrepare - missing
validation, unchecked bidExpiry,
unchecked expiry, unchecked
chainids/swaps, race conidtions

Medium

4.12 Router - handleNewAuction -
fragile code Medium

4.13 Router - Cancel is not
implemented Medium

4.14 TransactionManager.prepare
- Possible grie�ing/denial of
service by front-running Medium
✓ Unveri�ied Fix

4.15 Router - Provide and enforce
safe defaults (con�ig) Medium

4.16 ProposedOwnable - two-step
ownership transfer should be
con�irmed by the new owner

Medium ✓ Fixed

4.17 Ful�illInterpreter - Wrong
order of actions in fallback
handling Minor

https://connext.network/
https://github.com/connext/nxtp
https://github.com/connext/nxtp/tree/0656436d654cfe0313fa3c2bbc81aa86232ade16
https://github.com/connext/nxtp/tree/0656436d654cfe0313fa3c2bbc81aa86232ade16
https://github.com/connext/nxtp/tree/0656436d654cfe0313fa3c2bbc81aa86232ade16
https://github.com/connext/nxtp/tree/494d07d3707df91658de45e2177a79adc80cf5fe
https://github.com/connext/nxtp/tree/0656436d654cfe0313fa3c2bbc81aa86232ade16
https://github.com/connext/nxtp/tree/0656436d654cfe0313fa3c2bbc81aa86232ade16
http://localhost:1313/diligence/audits/private/rrcm4t83gvyj6a/img/connext.png

withdraw the swap source asset

cancel a swap request

Relayers
ful�ill a swap transaction on behalf of a user

cancel a swap transaction on behalf of a user

Owner
add and remove routers

add and remove assets

3.2 Risks, responsibilities, and trust assumptions for users, routers, and relayers

As soon as a user has revealed their fulfill signature to anyone (including a relayer or a mempool on the receiving chain),
it can be used to fulfill on the sending chain, which means the user’s funds are transferred to the router. The user’s
interest is to fulfill on the receiving chain; they might either do that themself or trust that a relayer who will do it for them.
Hence, they must reveal their signature early enough to give the relayers the possibility to do that before receiving-side
expiry. A user might even choose to start so early that they still have time to fulfill themself (which might involve buying
gas on the receiving chain), in case no relayer picks up the task. Factors like chain congestion have to be taken into
account, too.
The router faces a symmetric risk with regard to chain congestion on the sending chain. The router must therefore choose
an expiry on the receiving chain that gives them enough time to ful�ill on the sending chain, even if the user’s signature isn’t
revealed any sooner than expiry on the receiving chain.

Users must, in their own best interest, never reuse a transactionId they have used before — not even across different chains
and no matter whether the transaction was successful or not. (See also issue 4.18.)

A user must never sign a cancel while ful�illment on the sending chain is still possible. This is discussed more thoroughly in
issue 4.10.

Users must carefully examine and validate the transaction counterpart on the receiving side, particularly amount and expiry .
[The next sentence only applies to the original version of the code, as the shares logic has been removed in the revised
version.]
As outlined in issue 4.3, item 5, the amount emitted in TransactionPrepared can differ signi�icantly from what a user could expect
if the number of shares stored in the txData would be converted immediately to a token amount again (which is the relevant
information).

Actions that are supposed to follow a successful on-chain transaction should wait for enough con�irmations. For example,
the router should only prepare the corresponding receiving-chain transaction when they can be su�iciently sure that the
sending-side transaction won’t vanish in a chain reorganization. Similarly, the user should only reveal the signature when
they are con�ident that the receiving-chain transaction will persist. (See also issue 4.15.)

Price volatility is a natural risk with commitments to exchange, at a later time, a certain amount of one asset for a certain
amount of a different asset; when the transfers actually take place, prices may have deviated considerably. This applies
similarly to agreed-upon fees in a volatile asset.

After the user has sent the sending-chain transaction, the router might not follow through and send the receiving-chain
transaction. In that case, the user’s capital is locked until expiry, and the user had/has to pay the gas costs for prepare and
cancel without getting anything in return. Similarly, if the router does prepare on the receiving chain and the user does not

reveal their signature, the router’s funds will be locked until expiry, and the gas for the transaction will be wasted; however,
the same is true for the user.

A transaction sent by a relayer might revert due to unforeseen reasons such as a competing relayer front-running their
transaction; in that case, they have to pay the gas costs for the failing transaction but will not get the fee.
Similarly, since untrusted code may be executed during ful�illment on the receiving chain (e.g., a recipient hook in the token
code) gas consumption for the transaction could be higher than anticipated. (Again, this might happen in a front-running
manner.) This could incur a loss for the relayer, no matter whether the transaction gets executed and the gas costs are
higher than the relayer fee or whether the transaction runs out of gas and reverts.
[This item has been clari�ied and extended compared to the original version of the report.]

Token contracts have to be carefully vetted for compatibility with NXTP. Bugs, privileges of operators, non-standard or weird
behavior, and more or less accepted features like blacklisting obviously can have an impact on the protocol and cause lost
or stuck funds.

The owner of the TransactionManager contract has the privilege to add and remove routers as well as assets. That means routers
and assets could be censored at will, even in a front-running or sandwiching manner. Best practices for key management of
a privileged account should be followed.

4 Findings
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

Major issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to be �ixed.

4.1 TransactionManager - User might steal router’s locked funds Critical ✓ Fixed

Resolution

4.18 Ful�illInterpreter - Executed
event can’t be linked to
TransactionFulfilled event

Minor ✓ Fixed

4.19 Sdk.�inishTransfer - missing
validation Minor

4.20 Ful�illInterpreter - Missing
check whether callTo address

contains code Minor ✓ Fixed

4 21 T i M

This issue has been �ixed.

Description

TransactionManager.removeLiquidity is intended to be restricted for routers only, but in practice, it’s callable by users that had
deposited funds to the contract using TransactionManager.prepare . A user may initiate a prepare transaction, wait for the router to
lock his funds (by calling prepare on the receiving chain), then the user can call removeLiquidity , and fulfill (on the receiving
chain), thus stealing router’s locked funds while claiming his locked funds back.

Recommendation

Consider using a data structure different than issuedShares for storing user deposits. This way, withdrawals by users will only be
allowed when calling TransactionManager.cancel .

4.2 TransactionManager - Receiver-side check also on sending side Major ✓ Unveri�ied Fix

Resolution

The Connext team claims to have �ixed this in commit 4adbfd52703441ee5de655130fc2e0252eae4661 . We have not reviewed this
commit or, generally, the codebase at this point.

Description

The functions prepare , cancel , and fulfill in the TransactionManager all have a “common part” that is executed on both the sending
and the receiving chain and side-speci�ic parts that are only executed either on the sending or on the receiving side.
The following lines occur in fulfill ’s common part, but this should only be checked on the receiving chain. In fact, on the
sending chain, we might even compare amounts of different assets.

code2/packages/contracts/contracts/TransactionManager.sol:L476-L478

// Sanity check: fee <= amount. Allow `=` in case of only wanting to execute
// 0-value crosschain tx, so only providing the fee amount
require(relayerFee <= txData.amount, "#F:023");

This could prevent a legitimate fulfill on the sending chain, causing a loss of funds for the router.

Recommendation

Move these lines to the receiving-side part.

Remark

The callData supplied to fulfill is not used at all on the sending chain, but the check whether its hash matches
txData.callDataHash happens in the common part.

code2/packages/contracts/contracts/TransactionManager.sol:L480-L481

// Check provided callData matches stored hash
require(keccak256(callData) == txData.callDataHash, "#F:024");

In principle, this check could also be moved to the receiving-chain part, allowing the router to save some gas by calling
sending-side fulfill with empty callData and skip the check. Note, however, that the TransactionFulfilled event will then also emit
the “wrong” callData on the sending chain, so the off-chain code has to be able to deal with that if you want to employ this
optimization.

4.3 TransactionManager - Flawed shares arithmetic Major ✓ Fixed

Resolution

Comment from Connext:

We removed the shares logic completely, and are instead only focusing on standard tokens (i.e. rebasing,
in�lationary, and de�lationary tokens are not supported directly). If users want to transfer non-standard tokens,
they do so at their own risk.

Description

To support a wide variety of tokens, the TransactionManager uses a per-asset shares system to represent fractional ownership of the
contract’s balance in a token. There are several �laws in the shares-related arithmetic, such as:

1. addLiquidity and sender-side prepare convert asset amounts 1:1 to shares, instead of taking the current value of a share into
account. A 1:1 conversion is only appropriate if the number of shares is 0, for example, for the �irst deposit.

2. The WadRayMath library is not used correctly (and maybe not the ideal tool for the task in the �irst place): rayMul and rayDiv

each operate on two rays (decimal numbers with 27 digits) but are not used according to that speci�ication in
getAmountFromIssuedShares and getIssuedSharesFromAmount . The scaling errors cancel each other out, though.

3. The WadRayMath library rounds to the nearest representable number. That might not be desirable for NXTP; for example,
converting a token amount to shares and back to tokens might lead to a higher amount than we started with.

https://github.com/connext/nxtp/commit/4adbfd52703441ee5de655130fc2e0252eae4661

4. The WadRayMath library reverts on over�lows, which might not be acceptable behavior. For instance, a receiver-side fulfill

might fail due to an over�low in the conversion from shares to a token amount. The corresponding fulfill on the sending
chain might very well succeed, though, and it is possible that, at a later point, the receiver-side transaction can be canceled.
(Note that canceling does not involve actually converting shares into a token amount, but the calculation is done anyway
for the event.)

5. The amount emitted in the TransactionPrepared event on the receiving chain can, depending on the granularity of the shares,
differ considerably from what a user can expect to receive when the shares are converted back into tokens. The reason for
this is the double conversion from the initial token amount — which is emitted — to shares and, later, back to tokens.

6. Special cases might have to be taken into account. As a more subtle example, converting a non-zero token amount to
shares is not possible (or at least not with the usual semantics) if the contract’s balance is zero, but the number of already
existing shares is strictly greater than zero, as any number of shares will give you back less than the original amount.
Whether this situation is possible depends on the token contract.

Recommendation

The shares logic was added late to the contract and is still in a pretty rough shape. While providing a full-�ledged solution is
beyond the scope of this review, we hope that the points raised above provide pointers and guidelines to inform a major
overhaul.

4.4 Router - handleMetaTxRequest - gas grie�ing / race conditions / missing validations / free meta
transactions Major

Description

There’s a comment in handleMetaTxRequest that asks whether data needs to be validated before interacting with the contract and the
answer is yes, always, or else this opens up a gas grie�ing vector on the router side.

For example, someone might �lood broadcast masses of metaTx requests (*.*.metatx) and all online routers will race to call
TransactionManager.fulfill() . Even if only one transaction should be able to successfully go through all the others will loose on gas

(until up to the �irst require failing).

Given that there is no rate limiting and it is a broadcast that is very cheap to perform on the client-side (I can just spawn a lot of
nodes spamming messages) this can be very severe, keeping the router busy sending transactions that are deemed to fail until
the routers balance falls below the min gas limit con�igured.

Even if the router would check the contracts current state �irst (performing read-only calls that can be done o�line) to check if
the transaction has a chance to succeed, it will still compete in a race for the current block (mempool).

Examples

code/packages/router/src/handler.ts:L459-L477

const fulfillData: MetaTxFulfillPayload = data.data;
// Validate that metatx request matches with known data about fulfill
// Is this needed? Can we just submit to chain without validating?
// Technically this is ok, but perhaps we want to validate only for our own
// logging purposes.
// Would also be bad if router had no gas here
// Next, prepare the tx object
// - Get chainId from data
// - Get fulfill fee from data and validate it covers gas
// - etc.
// Send to txService
// Update metrics

// TODO: make sure fee is something we want to accept

this.logger.info({ method, methodId, requestContext, chainId, data }, "Submitting tx");
const res = await this.txManager
 .fulfill(
 chainId,

Recommendation

For state-changing transactions that actually cost gas there is no way around implementing strict validation whenever possible
and avoid performing the transaction in case validation fails. Contract state should always be validated before issuing new
online transactions but this might not �ix the problem that routers still compete for their transaction to be included in the next
block (mempool not monitored). The question therefore is, whether it would be better to change the metaTX �low to have a
router con�irm that they will send the tx via the messaging service �irst so others know they do not even have to try to send it.
However, even this scenario may allow to DoS the system by maliciously responding with such a method.

In general, there’re a lot of ways to craft a message that forces the router to issue an on-chain transaction that may fail with no
consequences for the sender of the metaTx message.

Additionally, the relayerFee is currently unchecked which may lead to the router loosing funds because they effectively accept
zero-fee relays.

As noted in issue 4.6, the missing return after detecting that the metatx is destined for a TransactionManager that is not
supported allows for explicit gas grie�ing attacks (deploy a fake TransactionManager.ful�ill that mines all the gas for a
bene�iciary).

The contract methods should additionally validate that the sender balance can cover for the gas required to send the
transaction.

4.5 Router - subgraphLoop may process transactions the router was not con�igured for (code
fragility) Major

Description

subgraphLoop gets all sending transactions for the router, chain, status triplet.

code/packages/router/src/subgraph.ts:L155-L159

allSenderPrepared = await sdk.GetSenderTransactions({
 routerId: this.routerAddress.toLowerCase(),
 sendingChainId: chainId,
 status: TransactionStatus.Prepared,
});

and then sorts the results by receiving chain id. Note that this keeps track of chainID’s the router was not con�igured for.

code/packages/router/src/subgraph.ts:L168-L176

// create list of txIds for each receiving chain
const receivingChains: Record<string, string[]> = {};
allSenderPrepared.router?.transactions.forEach(({ transactionId, receivingChainId }) => {
 if (receivingChains[receivingChainId]) {
 receivingChains[receivingChainId].push(transactionId);
 } else {
 receivingChains[receivingChainId] = [transactionId];
 }
});

In a next step, transactions are resolved from the various chains. This �ilters out chainID’s the router was not con�igured for (and
just returns an empty array), however, the GetTransactions query assumes that transactionID ’s are unique across the subgraph
which might not be true!

code/packages/router/src/subgraph.ts:L179-L193

let correspondingReceiverTxs: any[];
try {
 const queries = await Promise.all(
 Object.entries(receivingChains).map(async ([cId, txIds]) => {
 const _sdk = this.sdks[Number(cId)];
 if (!_sdk) {
 this.logger.error({ chainId: cId, method, methodId }, "No config for chain, this should not happen");
 return [];
 }
 const query = await _sdk.GetTransactions({ transactionIds: txIds.map((t) => t.toLowerCase()) });
 return query.transactions;
 }),
);
 correspondingReceiverTxs = queries.flat();
} catch (err) {

In the last step, all chainID’s (even the one’s the router was not con�igured for) are iterated again (which might be unnecessary).
TransactionID’s are loosely matched from the previously �lattened results from all the various chains. Since transactionID’s don’t
necessarily need to be unique across chains or within the chain, it is likely that the subsequent matching of transactionID’s (
correspondingReceiverTxs.find) returns more than 1 entry. However, find() just returns the �irst item and covers up the fact that there

might be multiple matches. Also, since the code returned an empty array for chains it was not con�igured for, the �ind will return
undef satisfying the !corresponding branch and �ire an SenderTransactionPrepared triggering the handler to perform an on-chain action

that will most de�initely fail at some point.

Recommendation

The code in this module is generally very fragile. It is based on assumptions that can likely be exploited by a third party re-using
transactionID’s (or other values). It is highly recommended to rework the code making it more resilient to potential corner cases.

Filter receivingChains for chainID’s that are not supported by the router

Avoid having to integrating the allSenderPrepared array twice and use a �iltered list instead

Change the very broad query in _sdk.GetTransactions() that assumes transactionID’s are unique across all chains to a speci�ic
query that selects transactions speci�ic to the chain and this router. The more speci�ic the better!

When matching the transactions also match the source/receiver chains instead of only matching the transactionID.
Additionally, check if more than one entry matches the condition instead of silently taking the �irst result (this is what
array.find() does)

Also see issue 5.2

4.6 Router - handler reports an error condition but continues execution instead of aborting it Major

Description

There are some code paths that detect and log an error but then continue the execution �low instead of returning the error
condition to the caller. This may allow for a variety of grie�ing vectors (e.g. gas grie�ing).

Examples

reports an error because the received address does not match our con�igured transaction manager, but then proceeds. This
means the router would accept a transaction manager it was not con�igured for.

code/packages/router/src/handler.ts:L448-L458

if (utils.getAddress(data.to) !== utils.getAddress(chainConfig.transactionManagerAddress)) {
 const err = new HandlerError(HandlerError.reasons.ConfigError, {
 requestContext,
 calling: "chainConfig.transactionManagerAddress",
 methodId,
 method,
 configError: `Provided transactionManagerAddress does not map to our configured transactionManagerAddress`,
 });
 this.logger.error({ method, methodId, requestContext, err: err.toJson() }, "Error in config");
}

If chainConfig is undef this should return or else it will bail later

code/packages/router/src/handler.ts:L436-L445

if (!chainConfig) {
 const err = new HandlerError(HandlerError.reasons.ConfigError, {
 requestContext,
 calling: "getConfig",
 methodId,
 method,
 configError: `No chainConfig for ${chainId}`,
 });
 this.logger.error({ method, methodId, requestContext, err: err.toJson() }, "Error in config");
}

if data is not fulfill this silently returns, while it should probably raise an error instead (unexpected message)

code/packages/router/src/handler.ts:L447-L447

if (data.type === "Fulfill") {

Recommendation

Implement strict validation of untrusted data.

Be explicit and raise error conditions on unexpected messages (e.g. type is not fulfill) instead of silently skipping the
message.

Add the missing returns after reporting an error instead of continuing the execution �low on errors.

4.7 Router - spawns unauthenticated admin API endpoint listening on all interfaces Major

Description

unauthenticated

listening on allips

pot. allows any local or remote unpriv user with access to the endpoint to steal the routers liquidity
/remove-liquidity -> req.body.recipientAddress

Examples

code/packages/router/src/index.ts:L123-L130

server.listen(8080, "0.0.0.0", (err, address) => {
 if (err) {
 console.error(err);
 process.exit(1);
 }
 console.log(`Server listening at ${address}`);
});

Recommendation

require authentication

should only bind to localhost by default

4.8 TODO comments should be resolved Medium

Description

As part of the process of bringing the application to production readiness, dev comments (especially TODOs) should be
resolved. In many cases, these comments indicate a missing functionality that should be implemented, or some missing
necessary validation checks.

4.9 TransactionManager - Missing nonReentrant modi�ier on removeLiquidity Medium ✓ Fixed

Resolution

This issue has been �ixed.

Description

The removeLiquidity function does not have a nonReentrant modi�ier.

code/packages/contracts/contracts/TransactionManager.sol:L274-L329

/**
 * @notice This is used by any router to decrease their available
 * liquidity for a given asset.
 * @param shares The amount of liquidity to remove for the router in shares
 * @param assetId The address (or `address(0)` if native asset) of the
 * asset you're removing liquidity for
 * @param recipient The address that will receive the liquidity being removed
 */
function removeLiquidity(
 uint256 shares,
 address assetId,
 address payable recipient
) external override {
 // Sanity check: recipient is sensible
 require(recipient != address(0), "#RL:007");

 // Sanity check: nonzero shares
 require(shares > 0, "#RL:035");

 // Get stored router shares
 uint256 routerShares = issuedShares[msg.sender][assetId];

 // Get stored outstanding shares
 uint256 outstanding = outstandingShares[assetId];

 // Sanity check: owns enough shares
 require(routerShares >= shares, "#RL:018");

 // Convert shares to amount
 uint256 amount = getAmountFromIssuedShares(
 shares,
 outstanding,
 Asset.getOwnBalance(assetId)
);

 // Update router issued shares
 // NOTE: unchecked due to require above
 unchecked {
 issuedShares[msg.sender][assetId] = routerShares - shares;
 }

 // Update the total shares for asset
 outstandingShares[assetId] = outstanding - shares;

 // Transfer from contract to specified recipient
 Asset.transferAsset(assetId, recipient, amount);

 // Emit event
 emit LiquidityRemoved(
 msg.sender,
 assetId,
 shares,
 amount,
 recipient
);
}

Assuming we’re dealing with a token contract that allows execution of third-party-supplied code, that means it is possible to
leave the TransactionManager contract in one of the functions that call into the token contract and then reenter via removeLiquidity .
Alternatively, we can leave the contract in removeLiquidity and reenter through an arbitrary external function, even if it has a
nonReentrant modi�ier.

Example

Assume a token contract allows the execution of third-party-supplied code in its transfer function before the actual balance
change takes place. If a router calls removeLiquidity with half of their shares and then, in a reentering removeLiquidity call, supplies
the other half of their shares, they will receive more tokens than if they had liquidated all their shares at once because the
reentering call occurs after the (�irst half of the) shares have been burnt but before the corresponding amount of tokens has
actually been transferred out of the contract, leading to an arti�icially increased share value in the reentering call. Similarly,
reentering the contract with a fulfill call on the receiving chain instead of a second removeLiquidity would transfer too many
tokens to the recipient due to the arti�icially in�lated share value.

Recommendation

While tokens that behave as described in the example might be rare or not exist at all, caution is advised when integrating with
unknown tokens or calling untrusted code in general. We strongly recommend adding a nonReentrant modi�ier to removeLiquidity .

4.10 TransactionManager - Relayer may use user’s cancel after expiry signature to steal user’s
funds by colluding with a router Medium Acknowledged

Resolution

This has been acknowledged by the Connext team. As discussed below in the “Recommendation”, it is not a �law in the
contracts per se but rather a high-risk situation caused by cancellation signatures working on both sender and receiver
side. As immediate mitigation, sender-side cancellation via signature has been removed completely. The “signature rules”
explained below still apply and have to be followed.

Description

Users that are willing to have a lower trust dependency on a relayer should have the ability to opt-in only for the service that
allows the relayer to withdraw back users’ funds from the sending chain after expiry. However, in practice, a user is forced to

opt-in for the service that refunds the router before the expiry, since the same signature is used for both services (lines 795,817
use the same signature).

Let’s consider the case of a user willing to call fulfill on his own, but to use the relayer only to withdraw back his funds from
the sending chain after expiry. In this case, the relayer can collude with the router and use the user’s cancel signature (meant for
withdrawing his only after expiry) as a front-running transaction for a user call to fulfill . This way the router will be able to
withdraw both his funds and the user’s funds since the user’s fulfill signature is now public data residing in the mem-pool.

Examples

code/packages/contracts/contracts/TransactionManager.sol:L795-L817

Recommendation

The crucial point here is that the user must never sign a “cancel” that could be used on the receiving chain while ful�illment on
the sending chain is still a possibility.
Or, to put it differently: A user may only sign a “cancel” that is valid on the receiving chain after sending-chain expiry or if they
never have and won’t ever sign a “ful�ill” (or at least won’t sign until sending-chain expiry — but it is pointless to sign a “ful�ill”
after that, so “never” is a reasonable simpli�ication).
Or, �inally, a more symmetric perspective on this requirement: If a user has signed “ful�ill”, they must not sign a receiving-chain-
valid “cancel” until sending-chain expiry, and if they have signed a receiving-chain-valid “cancel”, they must not sign a “ful�ill”
(until sending-chain expiry).

In this sense, “cancel” signatures that are valid on the receiving chain are dangerous, while sending-side cancellations are not.
So the principle stated in the previous paragraph might be easier to follow with different signatures for sending- and receiving-
chain cancellations.

4.11 Router - handleSenderPrepare - missing validation, unchecked bidExpiry, unchecked expiry,
unchecked chainids/swaps, race conidtions Medium

Description

This �inding highlights a collection of issues with the handleSenderPrepare method. The code and coding style appears fragile.
Validation should be strictly enforced and protective measures against potential race conditions should be implemented.

The following list highlights individual �indings that contribute risk and therefore broaden the attack surface of this method:

unchecked bidExpiry might allow using bids even after expiration.

code/packages/router/src/handler.ts:L612-L626

.andThen(() => {
 // TODO: anything else? seems unnecessary to validate everything
 if (!BigNumber.from(bid.amount).eq(amount) || bid.transactionId !== txData.transactionId) {
 return err(
 new HandlerError(HandlerError.reasons.PrepareValidationError, {
 method,
 methodId,
 calling: "",
 requestContext,
 prepareError: "Bid params not equal to tx data",
 }),
);
 }
 return ok(undefined);
});

unchecked txdata.expiry might lead to router preparing for an already expired prepare. However, this is rather unlikely easily
exploitable as the data source is a subgraph.

a bid might not be ful�illable anymore due to changes to the router (e.g. removing a chaincon�ig or assets) but the router
would still attempt it. Make sure to always verify chainid/assets/the con�igured system parameters.

potential race condition. make sure to lock the txID in the beginning.

code/packages/router/src/handler.ts:L663-L669

 require(msg.sender == txData.user || recoverSignature(txData.transactionId, relayerFee, "cancel", signature) == txData.user, "#C

 Asset.transferAsset(txData.sendingAssetId, payable(msg.sender), relayerFee);
 }

 // Get the amount to refund the user
 uint256 toRefund;
 unchecked {
 toRefund = amount - relayerFee;
 }

 // Return locked funds to sending chain fallback
 if (toRefund > 0) {
 Asset.transferAsset(txData.sendingAssetId, payable(txData.sendingChainFallback), toRefund);
 }
 }

} else {
 // Receiver side, router liquidity is returned
 if (txData.expiry >= block.timestamp) {
 // Timeout has not expired and tx may only be cancelled by user
 // Validate signature
 require(msg.sender == txData.user || recoverSignature(txData.transactionId, relayerFee, "cancel", signature) == txData.user, "#C:02

// encode the data for contract call
// Send to txService
this.receiverPreparing.set(txData.transactionId, true);
this.logger.info(
 { method, methodId, requestContext, transactionId: txData.transactionId },
 "Sending receiver prepare tx",
);

Note that transactionID’s as they are used in the system must be unique across chains.

4.12 Router - handleNewAuction - fragile code Medium

Description

This �inding highlights a collection of issues with the handleNewAuction . The code and coding style appears fragile. Validation
should be strictly enforced, debugging code should be removed or disabled in production and protective measures should be
taken from abusive clients.

The following list highlights individual �indings that contribute risk and therefore broaden the attack surface of this method:

router bids on zero-amount requests (this will fail later when calling the contract, thus a potential gas grie�ing attack vector)

code/packages/router/src/handler.ts:L197-L201

// validate that assets/chains are supported and there is enough liquidity
// and gas on both sender and receiver side.
// TODO: will need to track this offchain
const amountReceived = mutateAmount(amount);

duplicate constant var assignment (subfunction const shadowing and unchecked initial con�ig!)

code/packages/router/src/handler.ts:L202-L204

const config = getConfig();
const sendingConfig = config.chainConfig[sendingChainId];
const receivingConfig = config.chainConfig[receivingChainId];

code/packages/router/src/handler.ts:L231-L240

// validate config
const config = getConfig();
const sendingConfig = config.chainConfig[sendingChainId];
const receivingConfig = config.chainConfig[receivingChainId];
if (
 !sendingConfig.providers ||
 sendingConfig.providers.length === 0 ||
 !receivingConfig.providers ||
 receivingConfig.providers.length === 0
) {

actual estimated gas required to fuel transaction is never checked. current balance might be outdated, especially in race
condition scenarios.

code/packages/router/src/handler.ts:L315-L318

.andThen((balances) => {
 const [senderBalance, receiverBalance] = balances as BigNumber[];
 if (senderBalance.lt(sendingConfig.minGas) || receiverBalance.lt(receivingConfig.minGas)) {
 return errAsync(

remove debug code from production build (dry-run)

code/packages/router/src/handler.ts:L194-L194

dryRun,

code/packages/router/src/handler.ts:L385-L385

this.messagingService.publishAuctionResponse(inbox, { bid, bidSignature: dryRun ? undefined : bidSignature }),

signer address might be different for different chains

code/packages/router/src/handler.ts:L290-L312

return combine([
 ResultAsync.fromPromise(
 this.txService.getBalance(sendingChainId, this.signer.address),
 (err) =>
 new HandlerError(HandlerError.reasons.TxServiceError, {
 calling: "txService.getBalance => sending",
 method,
 methodId,
 requestContext,
 txServiceError: jsonifyError(err as NxtpError),
 }),
),
 ResultAsync.fromPromise(
 this.txService.getBalance(receivingChainId, this.signer.address),
 (err) =>
 new HandlerError(HandlerError.reasons.TxServiceError, {
 calling: "txService.getBalance => receiving",
 method,
 methodId,
 requestContext,
 txServiceError: jsonifyError(err as NxtpError),
 }),
),

no rate limiting. potential DoS vector when someone �loods the node with auction requests (signi�icant work to be done,
handler is async, will trigger a reply message). user might force the router to sign the same message multiple times.

missing validation of bid parameters (expiriy within valid range, …)

4.13 Router - Cancel is not implemented Medium

Description

Canceling of failed/expired swaps does not seem to be implemented in the router. This may allow a user to trick the router into
preparing all its funds which will not automatically be reclaimed after expiration (router DoS).

Examples

cancelExpired is never called

code/packages/sdk/src/sdk.ts:L873-L885

// TODO: this just cancels a transaction, it is misnamed, has nothing to do with expiries
public async cancelExpired(cancelParams: CancelParams, chainId: number): Promise<providers.TransactionResponse> {
 const method = this.cancelExpired.name;
 const methodId = getRandomBytes32();
 this.logger.info({ method, methodId, cancelParams, chainId }, "Method started");
 const cancelRes = await this.transactionManager.cancel(chainId, cancelParams);
 if (cancelRes.isOk()) {
 this.logger.info({ method, methodId }, "Method complete");
 return cancelRes.value;
 } else {
 throw cancelRes.error;
 }
}

disabled code

code/packages/router/src/handler.ts:L719-L733

 "Do not cancel ATM, figure out why we are in this case first",
);
// const cancelRes = await this.txManager.cancel(txData.sendingChainId, {
// txData,
// signature: "0x",
// relayerFee: "0",
// });
// if (cancelRes.isOk()) {
// this.logger.warn(
// { method, methodId, transactionHash: cancelRes.value.transactionHash },
// "Cancelled transaction",
//);
// } else {
// this.logger.error({ method, methodId }, "Could not cancel transaction after error!");
// }

Recommendation

Implement the cancel �low.

4.14 TransactionManager.prepare - Possible grie�ing/denial of service by front-running Medium
✓ Unveri�ied Fix

Resolution

Comment from Connext:

We see this as a highly unlikely attack vector and have chosen not to mitigate it, but it is possible. Users can
always and easily generate a new key prepare from a new account, and performing this attack will always cost gas
and some dust amount. Further, adding in the suggested require(msg.sender == invariantData.user) will lock out many

contract-based use cases and requiring an additional signature/user interaction (auth , approve , prepare , fulfill) is
not desirable.

Indeed, since the user has to sign messages, it has to be an EOA, and, consequently, the suggested solution would exclude
contracts from calling prepare . A slight modi�ication of the recommendation should work, though: Instead of checking
msg.sender == invariantData.user , add a new member initiator (or msgSender or something similar) to the InvariantTransactionData

struct, and check msg.sender == invariantData.initiator in the prepare function. That would �ix the issue and still allow prepare

calls from a contract.

The Connext team claims to have implemented this solution in commit 6811bb2681f44f34ce28906cb842db49fb73d797 . We have not
reviewed this commit or, generally, the codebase at this point.

Description

A call to TransactionManager.prepare might be front-run with a transaction using the same invariantData but with a different amount

and/or expiry values. By choosing a tiny amount of assets, the attacker may prevent the user from locking his original desired
amount. The attacker can repeat this process for any new transactionId presented by the user, thus effectively denying the
service for him.

Recommendation

Consider adding a require(msg.sender == invariantData.user) restriction to TransactionManager.prepare .

4.15 Router - Provide and enforce safe defaults (con�ig) Medium

Description

Chain confirmations default to 1 which is not safe. In case of a re-org the router might (temporarily) get out of sync with the
chain and perform actions it should not perform. This may put funds at risk.

Examples

the schema requires an unsafe minimum of 1 con�irmation

code/packages/router/src/con�ig.ts:L33-L36

export const TChainConfig = Type.Object({
 providers: Type.Array(Type.String()),
 confirmations: Type.Number({ minimum: 1 }),
 subgraph: Type.String(),

the default con�iguration uses 1 con�irmation

code/packages/router/con�ig.json.example:L1-L17

{
 "adminToken": "blahblah",
 "chainConfig": {
 "4": {
 "providers": ["https://rinkeby.infura.io/v3/"],
 "confirmations": 1,
 "subgraph": "https://api.thegraph.com/subgraphs/name/connext/nxtp-rinkeby"
 },
 "5": {
 "providers": ["https://goerli.infura.io/v3/"],
 "confirmations": 1,
 "subgraph": "https://api.thegraph.com/subgraphs/name/connext/nxtp-goerli"
 }
 },
 "logLevel": "info",
 "mnemonic": "candy maple cake sugar pudding cream honey rich smooth crumble sweet treat"
}

Recommendation

Give guidance, provide and enforce safe defaults.

4.16 ProposedOwnable - two-step ownership transfer should be con�irmed by the new owner Medium

✓ Fixed

Resolution

All recommendations given below have been implemented. In addition to that, the privilege to manage assets and the
privilege to manage routers can now be renounced separately.

Description

In order to avoid losing control of the contract, the two-step ownership transfer should be con�irmed by the new owner’s
address instead of the current owner.

Examples

acceptProposedOwner is restricted to onlyOwner while ownership should be accepted by the newOwner

code/packages/contracts/contracts/ProposedOwnable.sol:L89-L96

https://github.com/connext/nxtp/commit/6811bb2681f44f34ce28906cb842db49fb73d797

/**
 * @notice Transfers ownership of the contract to a new account (`newOwner`).
 * Can only be called by the current owner.
 */
function acceptProposedOwner() public virtual onlyOwner {
 require((block.timestamp - _proposedTimestamp) > _delay, "#APO:030");
 _setOwner(_proposed);
}

move renounced() to ProposedOwnable as this is where it logically belongs to

code/packages/contracts/contracts/TransactionManager.sol:L160-L162

function renounced() public view override returns (bool) {
 return owner() == address(0);
}

onlyOwner can directly access state-var _owner instead of spending more gas on calling owner()

code/packages/contracts/contracts/ProposedOwnable.sol:L76-L79

modifier onlyOwner() {
 require(owner() == msg.sender, "#OO:029");
 _;
}

Recommendation

onlyOwner can directly access _owner (gas optimization)

add a method to explicitly renounce ownership of the contract

move TransactionManager.renounced() to ProposedOwnable as this is where it logically belongs to

change the access control for acceptProposedOwner from onlyOwner to require(msg.sender == _proposed) (new owner).

4.17 Ful�illInterpreter - Wrong order of actions in fallback handling Minor

Description

When a transaction with a callTo that is not address(0) is ful�illed, the funds to be withdrawn on the user’s behalf are �irst
transferred to the FulfillInterpreter instance that is associated with this TransactionManager instance. After that, execute is called on
that interpreter instance, which, in turn, tries to make a call to callTo . If that call reverts or isn’t made in the �irst place because
callTo is not a contract address, the funds are transferred directly to the receivingAddress in the transaction (which becomes
fallbackAddress in execute); otherwise, it’s the called contract’s task to transfer the previously approved funds from the interpreter.

code2/packages/contracts/contracts/interpreters/Ful�illInterpreter.sol:L68-L90

bool isNative = LibAsset.isNativeAsset(assetId);
if (!isNative) {
 LibAsset.increaseERC20Allowance(assetId, callTo, amount);
}

// Check if the callTo is a contract
bool success;
bytes memory returnData;
if (Address.isContract(callTo)) {
 // Try to execute the callData
 // the low level call will return `false` if its execution reverts
 (success, returnData) = callTo.call{value: isNative ? amount : 0}(callData);
}

// Handle failure cases
if (!success) {
 // If it fails, transfer to fallback
 LibAsset.transferAsset(assetId, fallbackAddress, amount);
 // Decrease allowance
 if (!isNative) {
 LibAsset.decreaseERC20Allowance(assetId, callTo, amount);
 }
}

For the fallback scenario, i.e., the call isn’t executed or fails, the funds are �irst transferred to fallbackAddress , and the previously
increased allowance is decreased after that. If the token supports it, the recipient of the direct transfer could try to exploit that
the approval hasn’t been revoked yet, so the logically correct order is to decrease the allowance �irst and transfer the funds
later. However, it should be noted that the FulfillInterpreter should, at any point in time, only hold the funds that are supposed to
be transferred as part of the current transaction; if there are any excess funds, these are leftovers from a previous failure to
withdraw everything that could have been withdrawn, so these can be considered up for grabs. Hence, this is only a minor
issue.

Recommendation

We recommend reversing the order of actions for the fallback case: Decrease the allowance �irst, and transfer later. Moreover, it
would be better to increase the allowance only in case a call will actually be made, i.e., if Address.isContract(callTo) is true .

Remark

This issue was already present in the original version of the code but was missed initially and only found during the re-audit.

4.18 Ful�illInterpreter - Executed event can’t be linked to TransactionFulfilled event Minor
✓ Fixed

Resolution

This issue has been �ixed. We’d like to point out, though:

1. Based on the data emitted by the TransactionFulfilled event, it is currently not possible to distinguish between:
(A) No call to callTo has been made because the address didn’t contain code.
(B) Address callTo did contain code, a call was made, and it failed with empty return data.
If this distinction seems relevant, an additional bool should be returned from FulfillInterpreter.execute and emitted in
TransactionFulfilled , indicating which of the two scenarios were encountered.

2. The Executed event isn’t needed anymore and could be removed.

Description

When a transaction with a callTo that is not address(0) is ful�illed, the funds to be withdrawn on the user’s behalf are �irst
transferred to the FulfillInterpreter instance that is associated with this TransactionManager instance. After that, execute is called on
that interpreter instance, which, in turn, tries to make a call to callTo . If that call reverts, the funds are transferred directly to the
receivingAddress in the transaction; otherwise, it’s the called contract’s task to transfer the (previously approved) funds from the

interpreter. In any case, at the end of execute an Executed event is emitted that, along with some other transaction data passed in
to execute , emits whether the call to callTo was successful (i.e., didn’t revert) and the return data from that call. The transactionId

is emitted too; however, that is not necessarily su�icient to link the Executed event unambiguously to the TransactionFulfilled event
emitted in the fulfill call — or to the full transaction data, for that matter.

While it is in the user’s best interest not to reuse a transactionId they have used before, unique transaction IDs are not enforced,
and a user seeking to wreak havoc might choose to reuse an ID if it helps them accomplish their goal. In this case, event-
monitoring software might get confused by several Executed events with the same transactionId and not be able to match the
event with its TransactionFulfilled counterpart.

Recommendation

Rather than emitting a separate Executed event — which needs to be linked to its corresponding TransactionFulfilled event — it
might be better to return success and returnData to the caller and then emit this information also in the TransactionFulfilled event. If
you also include toSend , everything that is currently emitted across two different events will be part of the TransactionFulfilled

data; however, toSend is not really necessary, as it can be inferred from amount and relayerFee , which are both emitted anyway.

Generally, the following rules apply to transaction IDs:

1. A user must, in their own best interest, never reuse a transactionId they have used before — not even across different chains
and no matter whether the transaction was successful or not.

2. This per-user uniqueness of transaction IDs is not enforced, though — not even per TransactionManager deployment. Hence,
the code may not rely on this assumption, and no harm must come from a reused transaction ID for the system or anyone
else than the user who reused the ID.

4.19 Sdk.�inishTransfer - missing validation Minor

Description

Sdk.finishTransfer should validate that the router that locks liquidity in the receiving chain, should be the same router the user
had committed to in the sending chain.

4.20 Ful�illInterpreter - Missing check whether callTo address contains code Minor ✓ Fixed

Resolution

This issue has been �ixed.

Description

The receiver-side prepare checks whether the callTo address is either zero or a contract:

code/packages/contracts/contracts/TransactionManager.sol:L466-L470

// Check that the callTo is a contract
// NOTE: This cannot happen on the sending chain (different chain
// contexts), so a user could mistakenly create a transfer that must be
// cancelled if this is incorrect
require(invariantData.callTo == address(0) || Address.isContract(invariantData.callTo), "#P:031");

However, as a contract may selfdestruct and the check is not repeated later, there is no guarantee that callTo still contains code
when the call to this address (assuming it is non-zero) is actually executed in FulfillInterpreter.execute :

code/packages/contracts/contracts/interpreters/Ful�illInterpreter.sol:L71-L82

// Try to execute the callData
// the low level call will return `false` if its execution reverts
(bool success, bytes memory returnData) = callTo.call{value: isEther ? amount : 0}(callData);

if (!success) {
 // If it fails, transfer to fallback
 Asset.transferAsset(assetId, fallbackAddress, amount);
 // Decrease allowance
 if (!isEther) {
 Asset.decreaseERC20Allowance(assetId, callTo, amount);
 }
}

As a result, if the contract at callTo self-destructs between prepare and fulfill (both on the receiving chain), success will be true

, and the funds will probably be lost to the user.

A user could currently try to avoid this by checking that the contract still exists before calling fulfill on the receiving chain, but
even then, they might get front-run by selfdestruct , and the situation is even worse with a relayer, so this provides no reliable
protection.

Recommendation

Repeat the Address.isContract check on callTo before making the external call in FulfillInterpreter.execute and send the funds to the
fallbackAddress if the result is false .

It is, perhaps, debatable whether the check in prepare should be kept or removed. In principle, if the contract gets deployed
between prepare and fulfill , that is still soon enough. However, if the callTo address doesn’t have code at the time of prepare ,
this seems more likely to be a mistake than a “late deployment”. So unless there is a demonstrated use case for “late
deployments”, failing in prepare (even though it’s receiver-side) might still be the better choice.

Remark

It should be noted that an unsuccessful call, i.e., a revert, is the only behavior that is recognized by FulfillInterpreter.execute as
failure. While it is prevalent to indicate failure by reverting, this doesn’t have to be the case; a well-known example is an ERC20
token that indicates a failing transfer by returning false .
A user who wants to utilize this feature has to make sure that the called contract behaves accordingly; if that is not the case, an
intermediary contract may be employed, which, for example, reverts for return value false .

4.21 TransactionManager - Adherence to EIP-712 Minor Won't Fix

Resolution

Comment from Connext:

We did not fully adopt EIP712 because hardware wallet support is still not universal. Additionally, we chose not to
address this issue in the recommended fashion (using address(this), block.chainId) because the fulfill signature
must be usable across both the sending and receiving chain. Instead, we made sure the
transactionManagerReceivingAddress, receivingChainId was signed.

We advise users of the system not to use their key and address for other systems that operate with signed messages unless
they can rule out the possibility of replay attacks.
Regarding the signed receivingChainId and receivingChainTxManagerAddress , we’d like to mention that even for receiver-side
ful�illment, these are not veri�ied against the current chain ID and address of the contract.

Description

fulfill function requires the user signature on a transactionId . While currently, the user SDK code is using a cryptographically
secured pseudo-random function to generate the transactionId , it should not be counted upon and measures should be placed
on the smart-contract level to ensure replay-attack protection.

Examples

code/packages/contracts/contracts/TransactionManager.sol:L918-L933

function recoverSignature(
 bytes32 transactionId,
 uint256 relayerFee,
 string memory functionIdentifier,
 bytes calldata signature
) internal pure returns (address) {
 // Create the signed payload
 SignedData memory payload = SignedData({
 transactionId: transactionId,
 relayerFee: relayerFee,
 functionIdentifier: functionIdentifier
 });

 // Recover
 return ECDSA.recover(ECDSA.toEthSignedMessageHash(keccak256(abi.encode(payload))), signature);
}

Recommendation

Consider adhering to EIP-712, or at least including address(this), block.chainId as part of the data signed by the user.

4.22 TransactionManager - Hard-coded chain ID might lead to problems after a chain split Minor
 Pending

Resolution

The recommendation below has been implemented, but the current codebase doesn’t handle chain splits correctly. On the
chain that gets a new chain ID, funds may be lost or frozen.

More speci�ically, after a chain split, we may �ind ourselves in the situation that the current chain ID is neither the
sendingChainId nor the receivingChainId stored in the invariant transaction data. If that is the case, we’re on the chain that got a

new chain ID. fulfill should always revert in this situation, but cancellation should be possible to release locked funds. We
don’t know, however, whether we should send the funds back to the user (that is, we’re on a fork of the sending chain) or
whether they should be given back to the router (that is, we’re on a fork of the receiving chain). Our recommendation to
solve this is to store in the variant transaction data explicitly whether this is the sending chain or the receiving chain; with
this information, we can disambiguate the situation and implement cancel correctly.

Description

The ID of the chain on which the contract is deployed is supplied as a constructor argument and stored as an immutable state
variable:

code/packages/contracts/contracts/TransactionManager.sol:L104-L107

/**
 * @dev The chain id of the contract, is passed in to avoid any evm issues
 */
uint256 public immutable chainId;

code/packages/contracts/contracts/TransactionManager.sol:L125-L128

constructor(uint256 _chainId) {
 chainId = _chainId;
 interpreter = new FulfillInterpreter(address(this));
}

Hence, chainId can never change, and even after a chain split, both contracts would continue to use the same chain ID. That can
have undesirable consequences. For example, a transaction that was prepared before the split could be ful�illed on both chains.

Recommendation

It would be better to query the chain ID directly from the chain via block.chainId . However, the development team informed us
that they had encountered problems with this approach as some chains apparently are not implementing this correctly. They
resorted to the method described above, a constructor-supplied, hard-coded value. For chains that do indeed not inform
correctly about their chain ID, this is a reasonable solution. However, for the reasons outlined above, we still recommend
querying the chain ID via block.chainId for chains that do support that — which should be the vast majority — and using the
fallback mechanism only when necessary.

4.23 Router - handling of native assetID (0x000..00 , e.g. ETH) not implemented Minor

Description

Contract.ts does not implement the native Asset (0x000...000 ; ETH). Transaction value is hardcoded to zero. approveTokensIfNeeded

will likely fail as it will attempt to contract call 0x0 and there is inconsistent use of default values (0 vs BigInt const.Zero).

Additionally, handleSenderPrepare does not manage approvals for ERC20 transfers.

Examples

harcoded zero amount

code/packages/router/src/contract.ts:L137-L147

return ResultAsync.fromPromise(
 this.txService.sendTx(
 {
 to: this.config.chainConfig[chainId].transactionManagerAddress,
 data: encodedData,
 value: constants.Zero,
 chainId,
 from: this.signerAddress,
 },
 requestContext,
),

code/packages/router/src/contract.ts:L206-L215

this.txService.sendTx(
 {
 chainId,
 data: fulfillData,
 to: nxtpContractAddress,
 value: 0,
 from: this.signerAddress,
 },
 requestContext,
),

approveTokensIfNeeded will fail when using native assets

code/packages/sdk/src/transactionManager.ts:L329-L333

).andThen((signerAddress) => {
 const erc20 = new Contract(
 assetId,
 ERC20.abi,
 this.signer.provider ? this.signer : this.signer.connect(config.provider),

Recommendation

Remove complexity by requiring ERC20 compliant wrapped native assets (e.g. WETH instead of native ETH).

4.24 Router - con�ig �ile is missing the swapPools attribute and credentials are leaked to console
in case of invalid con�ig Minor

Description

Node startup fails due to missing swapPools con�iguration in config.json.example . Con�idential secrets are leaked to console in the
event that the con�ig �ile is invalid.

Examples

 yarn workspace @connext/nxtp-router dev
[app] [nodemon] 2.0.12
[app] [nodemon] to restart at any time, enter `rs`
[app] [nodemon] watching path(s): .env dist/**/* ../@connext/nxtp-txservice/dist ../@connext/nxtp-contracts/dist ../@connext/nxtp-utils/dist
[app] [nodemon] watching extensions: js,json
[app] [nodemon] starting `node --enable-source-maps ./dist/index.js | pino-pretty`
[tsc]
[tsc] 13:52:29 - Starting compilation in watch mode...
[tsc]
[tsc]
[tsc] 13:52:29 - Found 0 errors. Watching for file changes.
[app] Found configFile
[app] Invalid config: {
[app] "mnemonic": "candy maple cake sugar pudding cream honey rich smooth crumble sweet treat",
[app] "authUrl": "https://auth.connext.network",
[app] "natsUrl": "nats://nats1.connext.provide.network:4222,nats://nats2.connext.provide.network:4222,nats://nats3.connext.provide.network:4222",
[app] "adminToken": "blahblah",
[app] "chainConfig": {
[app] "4": {
[app] "providers": [
[app] "https://rinkeby.infura.io/v3/"
[app]],
[app] "confirmations": 1,
[app] "subgraph": "https://api.thegraph.com/subgraphs/name/connext/nxtp-rinkeby",
[app] "transactionManagerAddress": "0x29E81453AAe28A63aE12c7ED7b3F8BC16629A4Fd",
[app] "minGas": "100000000000000000"
[app] },
[app] "5": {
[app] "providers": [
[app] "https://goerli.infura.io/v3/"
[app]],
[app] "confirmations": 1,
[app] "subgraph": "https://api.thegraph.com/subgraphs/name/connext/nxtp-goerli",
[app] "transactionManagerAddress": "0xbF0F4f639cDd010F38CeBEd546783BD71c9e5Ea0",
[app] "minGas": "100000000000000000"
[app] }
[app] },
[app] "logLevel": "info"
[app] }
[app] Error: must have required property 'swapPools'
[app] at Object.getEnvConfig (code/packages/router/dist/config.js:135:15)
[app] -> code/packages/router/src/config.ts:145:11
[app] at Object.getConfig (code/packages/router/dist/config.js:149:30)
[app] -> code/packages/router/src/config.ts:161:18
[app] at Object.<anonymous> (code/packages/router/dist/index.js:19:25)
[app] -> code/packages/router/src/index.ts:23:16
[app] at Module._compile (internal/modules/cjs/loader.js:1063:30)
[app] at Object.Module._extensions..js (internal/modules/cjs/loader.js:1092:10)
[app] at Module.load (internal/modules/cjs/loader.js:928:32)
[app] at Function.Module._load (internal/modules/cjs/loader.js:763:16)
[app] at Function.executeUserEntryPoint [as runMain] (internal/modules/run_main.js:72:12)
[app] at internal/main/run_main_module.js:17:47

Con�idential information is only cleared in case the con�ig �ile is valid but not in the event of an error

code/packages/router/src/con�ig.ts:L143-L149

if (!valid) {
 console.error(`Invalid config: ${JSON.stringify(nxtpConfig, null, 2)}`);
 throw new Error(validate.errors?.map((err) => err.message).join(","));
}

console.log(JSON.stringify({ ...nxtpConfig, mnemonic: "********" }, null, 2));
return nxtpConfig;

Recommendation

Provide a valid default example con�ig. Fix integration tests.

Always remove con�idential information before logging on screen.

Avoid providing default credentials as it is very likely that someone might end up using them. Consider asking the user to
provide missing credentials on �irst run or autogenerate it for them.

Note that the adminToken is not cleared before it is being printed to screen. If this is a credential it should be blanked out
before being printed. Consider separating application-speci�ic con�iguration from credentials/secrets.

5 Recommendations
5.1 Router - Logging Consistency

Description

Avoid using console.*() in favor of the logger.*() family to provide a consistent timestamped log trail. Note that console.* might
have different buffering behavior than logger.log which may mix up output lines.

Examples

code/packages/router/src/index.ts:L124-L131

server.listen(8080, "0.0.0.0", (err, address) => {
 if (err) {
 console.error(err);
 process.exit(1);
 }
 console.log(`Server listening at ${address}`);
});

code/packages/router/src/contract.ts:L415-L416

const decoded = this.txManagerInterface.decodeFunctionResult("getRouterBalance", encodedData);
console.log("decoded: ", decoded);

5.2 Router - Always perform strict validation of data received from third-parties or untrusted
sources

Description

For example, in subgraph.ts an external resource is queried to return transactions that match the router’s ID, sending Chain, and
status. An honest external party will only return items that match this �ilter. However, in case of the third-party misbehaving (or
being breached), it might happen that entries that do not belong to this node or chain con�iguration are returned.

Examples

code/packages/router/src/subgraph.ts:L153-L175

let allSenderPrepared: GetSenderTransactionsQuery;
try {
 allSenderPrepared = await sdk.GetSenderTransactions({
 routerId: this.routerAddress.toLowerCase(),
 sendingChainId: chainId,
 status: TransactionStatus.Prepared,
 });
} catch (err) {
 this.logger.error(
 { method, methodId, error: jsonifyError(err) },
 "Error in sdk.GetSenderTransactions, aborting loop interval",
);
 return;
}

// create list of txIds for each receiving chain
const receivingChains: Record<string, string[]> = {};
allSenderPrepared.router?.transactions.forEach(({ transactionId, receivingChainId }) => {
 if (receivingChains[receivingChainId]) {
 receivingChains[receivingChainId].push(transactionId);
 } else {
 receivingChains[receivingChainId] = [transactionId];
 }

Recommendation

It is recommended to implement a defense-in-depth approach always validating inputs that come from third-parties or untrusted
sources. Especially because the resources spent on performing the checks are negligible and signi�icantly reduce the risk posed
by third-party data providers.

5.3 Ful�illInterpreter - ReentrancyGuard can be removed Pending

Resolution

The nonReentrant modi�ier has been removed from FulfillInterpreter.execute , but the import of and inheritance from
ReentrancyGuard are still present. These are not needed anymore and should be removed too.

Description and Recommendation

The FulfillInterpreter has its own reentrancy protection, separate from the TransactionManager ’s. However, the only external state-
changing function in this contract, execute , has not only a nonReentrant modi�ier but also an onlyTransactionManager modi�ier that
ensures this function can only be called from the TransactionManager instance to which this FulfillInterpreter instance belongs.

code/packages/contracts/contracts/interpreters/Ful�illInterpreter.sol:L22-L28

/**
 * @notice Errors if the sender is not the transaction manager
 */
modifier onlyTransactionManager {
 require(msg.sender == _transactionManager, "#OTM:027");
 _;
}

code/packages/contracts/contracts/interpreters/Ful�illInterpreter.sol:L54-L61

function execute(
 bytes32 transactionId,
 address payable callTo,
 address assetId,
 address payable fallbackAddress,
 uint256 amount,
 bytes calldata callData
) override external payable nonReentrant onlyTransactionManager {

Consequently, if the TransactionManager contract can’t be reentered, the FulfillInterpreter is automatically protected against
reentrancy. Hence, if issue 4.9 is �ixed, the reentrancy guard can be removed from FulfillInterpreter .

5.4 Ful�illInterpreter - _transactionManager state variable can be immutable ✓ Fixed

Resolution

This recommendation has been implemented.

Description and Recommendation

The _transactionManager state variable in the FulfillInterpreter is set in the constructor and never changed afterward. Hence, it can
be immutable .

code/packages/contracts/contracts/interpreters/Ful�illInterpreter.sol:L16-L20

address private _transactionManager;

constructor(address transactionManager) {
 _transactionManager = transactionManager;
}

5.5 TransactionManager - Risk mitigation for addLiquidity ✓ Fixed

Resolution

This recommendation has been implemented.

Description and Recommendation

The addLiquidity function has a router parameter to specify the bene�iciary. Compared to just using msg.sender as bene�iciary, this
approach provides more �lexibility, but it also increases the risk of losing funds if a wrong address is supplied. Assuming the
�lexibility is considered important, a lightweight risk mitigation measure is to have two separate external functions: addLiquidity

for the presumably typical case of adding liquidity for msg.sender , and (perhaps) addLiquidityFor that takes a router parameter like
the current implementation. The latter should only be used when necessary. Of course, both functions could utilize the same
internal function to implement the actual logic.

Appendix 1 - Files in Scope
This audit covered the following �iles:

A.1.1 Initial version

Commit hash: 494d07d3707df91658de45e2177a79adc80cf5fe

File SHA-1

./packages/contracts/contracts/ProposedOwnable.sol 75ef3939477c7770c52bb2ddbb4bf5f91afe899b

./packages/contracts/contracts/TransactionManager.sol e6976510de139b65c34a252df7a3b90b0d722d2c

./packages/contracts/contracts/interfaces/IERC20Minimal.sol c7b725e9217869c3b0d4e9ab323a7d21492f3e17

./packages/contracts/contracts/interfaces/ITransactionManager.sol 71ebc72bdf89bce7122976a02d99809a52104e1c

./packages/contracts/contracts/interfaces/IFul�illInterpreter.sol 2f654a93a73dbdd5c20d5f4056c97ab59a58b175

https://github.com/connext/nxtp/tree/494d07d3707df91658de45e2177a79adc80cf5fe

File SHA-1

./packages/contracts/contracts/interpreters/Ful�illInterpreter.sol 1f570ca9204ac04c1f31710912dbc9ae873c1289

./packages/contracts/contracts/libraries/Asset.sol 4a80eb9afdd818763f5a51285b543eca00b9f209

./packages/contracts/contracts/libraries/WadRayMath.sol 9ec25c9afc02bfc0d17ab2db96a140f7c5f28b13

A.1.2 Revised version

Commit hash: 0656436d654cfe0313fa3c2bbc81aa86232ade16

File Name SHA-1 Hash

./packages/contracts/contracts/ProposedOwnable.sol 6d5cf96d344136b8e20ddee3894379e9cfc1a840

./packages/contracts/contracts/TransactionManager.sol 30d57ba8b435670cc879948c47a4e7dba727a21b

./packages/contracts/contracts/interfaces/IERC20Minimal.sol c7b725e9217869c3b0d4e9ab323a7d21492f3e17

./packages/contracts/contracts/interfaces/ITransactionManager.sol ced3ae11a7c408c2ad5a4f884ff9436419865905

./packages/contracts/contracts/interfaces/IFul�illInterpreter.sol 8e8b9f2d948fa57c0b538dd430de7decaddad94f

./packages/contracts/contracts/interpreters/Ful�illInterpreter.sol 2215c41318c66450b814719717926ea5a3a48ced

./packages/contracts/contracts/lib/LibAsset.sol 5f81a92f90e8858c146174b584def6d643cb4738

Appendix 2 - Document Change Log
Version Date Description

1.0 2021-08-06 Report for initial code version (494d07d3)

1.1 2021-09-06 Updated report for revised code version (0656436d)

1.2 2021-12-02 Publicized report for revised code version (0656436d); added two unveri�ied �ixes

Appendix 3 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via ConsenSys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any Third-Party in any respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the
Reports in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Speci�ically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients and published with their
consent. The scope of our review is limited to a review of code and only the code we note as being within the scope of our
review within this report. Any Solidity code itself presents unique and unquanti�iable risks as the Solidity language itself remains
under development and is subject to unknown risks and �laws. The review does not extend to the compiler layer, or any other
areas beyond speci�ied code that could present security risks. Cryptographic tokens are emergent technologies and carry with
them high levels of technical risk and uncertainty. In some instances, we may perform penetration testing or infrastructure
assessments depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) – on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer links, gain access to web sites
operated by persons other than ConsenSys and CD. Such hyperlinks are provided for your reference and convenience only, and
are the exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are not responsible for the content
or operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any other person or entity for the
use of third party Web sites. Except as described below, a hyperlink from this web Site to another web site does not imply or
mean that ConsenSys and CD endorses the content on that Web site or the operator or operations of that site. You are solely
responsible for determining the extent to which you may use any content at any other web sites to which you link from the
Reports. ConsenSys and CD assumes no responsibility for the use of third party software on the Web Site and shall have no
liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing on the Report and is subject
to change without notice. Unless indicated otherwise, by ConsenSys and CD.

https://github.com/connext/nxtp/tree/0656436d654cfe0313fa3c2bbc81aa86232ade16
https://github.com/connext/nxtp/tree/494d07d3707df91658de45e2177a79adc80cf5fe
https://github.com/connext/nxtp/tree/0656436d654cfe0313fa3c2bbc81aa86232ade16
https://github.com/connext/nxtp/tree/0656436d654cfe0313fa3c2bbc81aa86232ade16

Request a Security Review Today
Get in touch with our team to request a quote for a smart contract audit.

A U D I T S

F U Z Z I N G

S C R I B B L E

B L O G

T O O L S

R E S E A R C H

A B O U T

C O N TA C T

C A R E E R S

P R I VA C Y P O L I C Y

Subscribe to Our Newsletter
Stay up-to-date on our latest offerings, tools,
and the world of blockchain security.

CONTACT US

http://localhost:1313/diligence/audits/
http://localhost:1313/diligence/fuzzing/
http://localhost:1313/diligence/scribble/
http://localhost:1313/diligence/blog/
http://localhost:1313/diligence/tools/
http://localhost:1313/diligence/research/
http://localhost:1313/diligence/about/
http://localhost:1313/diligence/contact/
https://consensys.net/open-roles/?discipline=32525
http://localhost:1313/diligence/privacy-policy/
https://consensys.net/
http://localhost:1313/diligence/contact/

