CONSENSYS

Diligence

Ox v3 Exchange Audit

e T Summary Date September 2019
* 2 Audit Scope Lead Auditor Steve Marx
e 3 System Overview)
Co-auditors Sergii Kravchenko, Alex Wade
o 4 Key

Observations/Recommendations

5 Security Specification
o 5.7 Actors

o 5.2 Trust Model

6 Issues
o 6.1 An account that confirms a transaction via AssetProxyOwner can indefinitely

block that transaction v Fixed

o 6.2 Orders with signatures that require regular validation can have their validation
bypassed if the order is partially filled v Fixed

o 6.3 Changing the owners or required confirmations in the AssetProxyOwner can
unconfirm a previously confirmed transaction Medium v Fixed

o 6.4 Reentrancy in executeTransaction() Medium = Won' Fix
o 6.5 "Poison” order that consumes gas can block market trades Medium = Won't Fix
o 6.6 Frontrunning in matchOrders() Medium = Won't Fix

o 6.7 The Exchange owner should not be able to call executeTransaction or

batchExecuteTransaction Medium = Won't Fix
o 6.8 Anyone can front run MixinExchangeCore.cancelOrder() Medium
Won't Fix

o 6.9 By manipulating the gas limit, relayers can affect the outcome of

ZeroExTransaction S Won't Fix
o 6.10 Front running market orders Won't Fix
o 6.11 Modifier ordering plays a significant role in modifier efficacy v Fixed

(¢]

6.12 Several overflows in LibBytes v Addressed

o 6.13 NSignatureTypes enum value bypasses Solidity safety checks

Won't Fix

e 7/ Tool-Based Analysis
o 7.1 MythX
o /.2 Surya

e Appendix 1 - Disclosure

1T Summary

ConsenSys Diligence conducted a security audit on version 3 of the Ox Exchange contract

system.

ConsenSys has previously audited Ox v2. The 0x v2 audit report is good background

reading.

2 Audit Scope

The scope of this audit was the following projects within the Ox monorepo:

e exchange
e exchange-libs
e multisig

e utils

A separate report will cover the staking contracts.

The following files were reviewed:

File Name
exchange/contracts/src/Exchange.sol
exchange/contracts/src/MixinAssetProxyDispatcher.sol
exchange/contracts/src/MixinExchangeCore.sol
exchange/contracts/src/MixinMatchOrders.sol
exchange/contracts/src/MixinProtocolFees.sol

exchange/contracts/src/MixinSignatureValidator.sol

SHA-1 Hash
cb6733c32d3306348791b83a%:¢
ee5492092ebeal3397d53163cadt
87f9d192c0d75569ee95705baac
42868bedaea9327a636766682at
4982d287aaa206897698039fb3<

ab9bf0916642b2abaf7e2705d70

https://github.com/ConsenSys/0x_audit_report_2018-07-23

File Name
exchange/contracts/src/MixinTransactions.sol
exchange/contracts/src/MixinTransferSimulator.sol
exchange/contracts/src/MixinWrapperFunctions.sol
exchange/contracts/src/interfaces/IAssetProxy.sol
exchange/contracts/src/interfaces/IAssetProxyDispatcher.sol
exchange/contracts/src/interfaces/IEIP1271Data.sol
exchange/contracts/src/interfaces/IEIP1271Wallet.sol
exchange/contracts/src/interfaces/IExchange.sol
exchange/contracts/src/interfaces/IExchangeCore.sol
exchange/contracts/src/interfaces/IMatchOrders.sol
exchange/contracts/src/interfaces/IProtocolFees.sol
exchange/contracts/src/interfaces/ISignatureValidator.sol
exchange/contracts/src/interfaces/ITransactions.sol
exchange/contracts/src/interfaces/ITransferSimulator.sol
exchange/contracts/src/interfaces/IWallet.sol
exchange/contracts/src/interfaces/IWrapperFunctions.sol
exchange/contracts/src/libs/LibExchangeRichErrorDecoder.sol
exchange-libs/contracts/src/IWallet.sol
exchange-libs/contracts/src/LibEIP712ExchangeDomain.sol
exchange-libs/contracts/src/LibExchangeRichErrors.sol
exchange-libs/contracts/src/LibFillResults.sol
exchange-libs/contracts/src/LibMath.sol
exchange-libs/contracts/src/LibMathRichErrors.sol
exchange-libs/contracts/src/LibOrder.sol
exchange-libs/contracts/src/LibZeroExTransaction.sol
multisig/contracts/src/AssetProxyOwner.sol

multisig/contracts/src/MultiSigWallet.sol

SHA-1 Hash
c3108f751ef627e171ad35c445¢!
b3ceb9d2e4a8cc1c55648548b9¢
69ea’/edd94fc6fd1edebeHbadl 3¢
21860ceb6d0fe6286966dab04b3<
f3022084eee2e1a87d4bc023d2a
3e98264aa000a238a3f954b17ac
d99b3b52044chab15aleebbeet;
82d342133abh823431dc0725585
48b0562a46653734202a40cc2c
db34eec2bf4bc41c3b51ec35803
bcc0151ed53fa72a87102f18015
e2304c3b8612ec7b7899d163b8:
a2f67b8a%e047c0dc7c33efdad?:
02ea8f864e3277¢e1f7c30e0ea38:
81fbaee73e754cfbc57882e1¢cd8”
d1b20adfadb2639aff21e8a0d8f8
02¢13f0e1c57b12da14b0384bek
d3c769706e00d8a68175a261d7¢
823955e1f1b21a34ad3fdad1c7e!
e58712de5e18edfe951eab94124
49422e7a81067b52f6acc8fedde’
cabe24ec1de03bdea83351ce5f9
7f3b0be62d7a8d6f3026018aad0
114be366ad7a0a711a0c2e5525(
05ea4427d1df12aef259e07ac62
df9ed7cba84c1362fee9de80d77

33b84d070486847dcc86a140fdE

File Name
multisig/contracts/src/MultiSigWalletWithTimelLock.sol
utils/contracts/src/Authorizable.sol
utils/contracts/src/LibAddress.sol
utils/contracts/src/LibAddressArray.sol
utils/contracts/src/LibAddressArrayRichErrors.sol
utils/contracts/src/LibAuthorizableRichErrors.sol
utils/contracts/src/LibBytes.sol
utils/contracts/src/LibBytesRichErrors.sol
utils/contracts/src/LibEIP1271.s0l
utils/contracts/src/LIbEIP712.s0l
utils/contracts/src/LibFractions.sol
utils/contracts/src/LibOwnableRichErrors.sol
utils/contracts/src/LibReentrancyGuardRichErrors.sol
utils/contracts/src/LibRichErrors.sol
utils/contracts/src/LibSafeMath.sol
utils/contracts/src/LibSafeMathRichErrors.sol
utils/contracts/src/Ownable.sol
utils/contracts/src/ReentrancyGuard.sol
utils/contracts/src/Refundable.sol
utils/contracts/src/SafeMath.sol
utils/contracts/src/interfaces/IAuthorizable.sol

utils/contracts/src/interfaces/IOwnable.sol

SHA-1 Hash
c54d8b6631each20febbfadbeet
2ae731a21730cfdd30feb5d20da:
33eef1855488fbbbfd1eed92101f
b13d0359922c04fadb4b24abd3c
883bc123bab99balefc11a75f80:
abfba41b1c63ba91803721d4d0e
7a0c37b1577f5a12378fbf52917"
611b4e660351eed4e24140074ee”
2fe0c70163677ea228d9bcfecdbt
3b486180d6ee3eb6d5eT1f2fa57¢c i
552a637f32edb135942cd1ea25¢
dfda0c5639f5fc994712421dc92t
8af2504839d0b9a4a7a46948867
3be89d9503f6fbb6aee08aa51511"
f095f7330b0d2b0d85370b47bd5
7785c4a4076e3f0be3319ec4bc
8ede7b82d2ee0ed63b2162709d¢
5364694b8a2bba36861bfdd8d5¢
Ofe9acae963bb683b6c3539de83
5b675f9c12bf862a72¢c7dc71d00
3a438f74bdb79cfobff4dbe52a3

5fe3a74b7d5948bba5644db684<

The audit activities can be grouped into the following three broad categories:

1. Security: Identifying security related issues within the contract.

2. Architecture: Evaluating the system architecture through the lens of established

smart contract best practices.

3. Code quality: A full review of the contract source code. The primary areas of focus
include:
o Correctness

Readability

o

(o}

Scalability

(o}

Code complexity

(0]

Quality of test coverage
3 System Overview

The Ox Exchange is a decentralized exchange where various on-chain assets can be
traded. It uses an approach the Ox team refers to as “off-chain order relay with on-chain
settlement”. This means that, in the typical case, traders use signatures to indicate their
willingness to perform a certain trade, and anyone can deliver those trades to the on-chain
exchange contract, where the trade will be executed.

The Ox protocol 3.0 specification is an excellent explanation of the exchange and its inner
workings.

4 Key Observations/Recommendations

e The exchange documentation is excellent. Not only does it explain how the contract is
used, but it gives a detailed explanation of what each function does.

e The code is clear and includes helpful comments.

e Code for the exchange is spread across quite a few files. This sometimes makes it
difficult to follow various paths through the code.

e Thereis quite a bit of low-level assembly. This carries a risk, particularly where direct
memory access is involved. It would be good to stick to Solidity as where possible.

e Signature checking, as in Ox v2 remains an area of high complexity. If possible, it
would be good to reduce the number of signature methods.

5 Security Specification

This section describes, from a security perspective, the expected behavior of the system
under audit. It is not a substitute for documentation. The purpose of this section is to
identify specific security properties that were validated by the audit team.

https://github.com/0xProject/0x-protocol-specification/blob/3.0/v3/v3-specification.md
https://github.com/ConsenSys/0x_audit_report_2018-07-23

5.1 Actors
The relevant actors are as follows:

e Ox team — deploys and initializes the system. In particular, the Ox team is able to
update some parameters around protocol fees, as well as updating allowed
AssetProxy addresses, which are responsible for decoding order settlement
information.

e Traders — makers, who propose trades, and takers, who take those trades

¢ Relayers — third parties who send trades to the exchange contract to be executed

5.2 Trust Model

In any smart contract system, it's important to identify what trust is expected/required
between various actors. For this audit, we established the following trust model:

e Traders should not have to trust relayers. The only action a malicious relayer should
be able to take against the interest of a trader is to fail to relay the trade. If this

happens, a trader should be able to publish the trade themselves or through another

relayer.

e Traders should not have to trust the Ox team. Ox can pause trading, but this only
prevents further use of the contracts. Ox can also upgrade various system

components, but such upgrades require a waiting period, giving traders a time to stop

using the contract.
6 Issues

Each issue has an assigned severity:

e Minor issues are subjective in nature. They are typically suggestions around best
practices or readability. Code maintainers should use their own judgment as to
whether to address such issues.

e Medium issues are objective in nature but are not security vulnerabilities. These
should be addressed unless there is a clear reason not to.

e Major issues are security vulnerabilities that may not be directly exploitable or may
require certain conditions in order to be exploited. All major issues should be
addressed.

o Critical issues are directly exploitable security vulnerabilities that need to be fixed.

6.1 An account that confirms a transaction via AssetProxyOwner can
indefinitely block that transaction v Fixed

Resolution

This is fixed in OxProject/Ox-monorepo#2297 by allowing transactions to be “over
confirmed” without resetting the confirmation time. As long as there are enough
honest signers, this prevents a malicious signer from blocking transactions.

Description

When a transaction reaches the required number of confirmations in
confirmTransaction() , its confirmation time is recorded:

code/contracts/multisig/contracts/src/MultiSigWalletWithTimeLock.sol:L86-L100

/// @dev Allows an owner to confirm a transaction.

/// @param transactionId Transaction ID.

function confirmTransaction(uint256 transactionlId)
public
ownerExists(msg.sender)
transactionExists(transactionId)
notConfirmed(transactionId, msg.sender)
notFullyConfirmed(transactionId)

{
confirmations[transactionId][msg.sender] = true;
emit Confirmation(msg.sender, transactionId);
if (isConfirmed(transactionId)) {
_setConfirmationTime(transactionId, block.timestamp);
}
3

Before the time lock has elapsed and the transaction is executed, any of the owners that
originally confirmed the transaction can revoke their confirmation via

revokeConfirmation() :

code/contracts/multisig/contracts/src/MultiSigWallet.sol:L249-L259

https://github.com/0xProject/0x-monorepo/pull/2297

/// @dev Allows an owner to revoke a confirmation for a transaction.
/// @aram transactionId Transaction ID.
function revokeConfirmation(uint256 transactionId)

public

ownerExists(msg.sender)

confirmed(transactionId, msg.sender)

notExecuted(transactionId)

confirmations[transactionId][msg.sender] = false;

emit Revocation(msg.sender, transactionId);

Immediately after, that owner can call confirmTransaction() again, which will reset the
confirmation time and thus the time lock.

This is especially troubling in the case of a single compromised key, but it's also an issue
for disagreement among owners, where any m of the n owners should be able to execute
transactions but could be blocked.

Mitigations

Only an owner can do this, and that owner has to be part of the group that originally
confirmed the transaction. This means the malicious owner may have to front run the
others to make sure they're in that initial confirmation set.

Even once a malicious owner is in position to execute this perpetual delay, they need to call

revokeConfirmation() and confirmTransaction() again each time. Another owner
can attempt to front the attacker and execute their own confirmTransaction()
immediately after the revokeConfirmation() to regain control.

Recommendation

There are several ways to address this, but to best preserve the original MultiSigWallet
semantics, once a transaction has reached the required number of confirmations, it should
be impossible to revoke confirmations. In the original implementation, this is enforced by
immediately executing the transaction when the final confirmation is received.

6.2 Orders with signatures that require regular validation can have
their validation bypassed if the order is partially filled v Fixed

Resolution

This is fixed in OxProject/Ox-monorepo#2246. Signatures are now always validated
each time, regardless of type.

Description

The signature types Wallet , Validator ,and EIP1271Wallet require explicit validation
to authorize each action performed on a given order. This means that if an order was
signed using one of these methods, the Exchange must perform a validation step on the
signature each time the order is submitted for a partial fill. In contrast, the other canonical
signature types (EIP712 , EthSign ,and PreSigned) are only required to be validated by
the Exchange on the order’s first fill, subsequent fills take the order’s existing fill amount
as implicit validation that the order has a valid, published signature.

This re-validation step for Wallet , Validator ,and EIP1271Wallet signaturesis
intended to facilitate their use with contracts whose validation depends on some state that
may change over time. For example, a validating contract may call into a price feed and
determine that some order is invalid if its price deviates from some expected range. In this
case, the repeated validation allows 0x users to make orders with custom fill conditions
which are evaluated at run-time.

We found that if the sender provides the contract with an invalid signature after the order in
question has already been partially filled, the regular validation check required for wallet ,
Validator ,and EIP1271Wallet signatures can be bypassed entirely.

Examples

Signature validation takes place in MixinExchangeCore._assertFillableOrder . A
signature is only validated if it passes the following criteria:

code/contracts/exchange/contracts/src/MixinExchangeCore.sol:L372-L381

address makerAddress = order.makerAddress;
if (orderInfo.orderTakerAssetFilledAmount == @ ||
_doesSignatureRequireRegularValidation(

orderInfo.orderHash,

https://github.com/0xProject/0x-monorepo/pull/2246

makerAddress,
signature

) o

In effect, signature validation only occurs if:

e orderInfo.orderTakerAssetFilledAmount == @ OR

e _doesSignatureRequireRegularValidation(orderHash, makerAddress,

signature)

If an order is partially filled, the first condition will evaluate to false. Then, that order’s
signature will only be validated if _doesSignatureRequireRegularValidation evaluates

to true:

code/contracts/exchange/contracts/src/MixinSignatureValidator.sol:L183-L206

function _doesSignatureRequireRegularValidation(
bytes32 hash,
address signerAddress,
bytes memory signature

)

internal

pure

returns (bool needsRegularValidation)
{

// Read the signatureType from the signature
SignatureType signatureType = _readSignatureType(
hash,
signerAddress,

signature

)5

// Any signature type that makes an external call needs to be revalidated
// with every partial fill
needsRegularValidation =

signatureType == SignatureType.Wallet ||

signatureType == SignatureType.Validator ||

signatureType == SignatureType.EIP1271Wallet;

return needsRegularValidation;

The SignatureType returned from _readSignatureType is directly cast from the final
byte of the passed-in signature. Any value that does not cast to Wallet , Validator ,and
EIP1271Wallet will cause _doesSignatureRequireRegularValidation to return false,

skipping validation.

The result is that an order whose signature requires regular validation can be forced to skip
validation if it has been partially filled, by passing in an invalid signature.

Recommendation

There are a few options for remediation: 1. Have the Exchange validate the provided
signature every time an order is filled. 2. Record the first seen signature type or signature
hash for each order, and check that subsequent actions are submitted with a matching
signature.

The first option requires the fewest changes, and does not require storing additional state.
While this does mean some additional cost validating subsequent signatures, we feel the
increase in flexibility is well worth it, as a maker could choose to create multiple valid
signatures for use across different order books.

6.3 Changing the owners or required confirmations in the
AssetProxyOwner can unconfirm a previously confirmed transaction
Medium v Fixed

Resolution

This issue is somewhat inaccurate: isConfirmed() breaks out of the loop once it's
found the correct number of confirmations. That means that lowering the number of
required confirmations is not a problem.

Further, OxProject/0Ox-monorepo#2297 allows signers to confirm transactions that
have already been confirmed.

Increasing signing requirements or changing signers can still unconfirm previously
confirmed transactions, but the development team is happy with that behavior.

https://github.com/0xProject/0x-monorepo/pull/2297

Description

Once a transaction has been confirmed in the AssetProxyOwner , it cannot be executed
until a lock period has passed. During that time, any change to the number of required
confirmations will cause this transaction to no longer be executable.

If the number of required confirmations was decreased, then one or more owners will have
to revoke their confirmation before the transaction can be executed.

If the number of required confirmations was increased, then additional owners will have to
confirm the transaction, and when the new required number of confirmations is reached, a
new confirmation time will be recorded, and thus the time lock will restart.

Similarly, if an owner that had previously confirmed the transaction is replaced, the number
of confirmations will drop for existing transactions, and they will need to be confirmed
again.

This is not disastrous, but it's almost certainly unintended behavior and may make it
difficult to make changes to the multisig owners and parameters.

Examples

executeTransaction() requires that at the time of execution, the transaction is
confirmed:

code/contracts/multisig/contracts/src/AssetProxyOwner.sol:L115-L118

function executeTransaction(uint256 transactionld)
public
notExecuted(transactionId)

fullyConfirmed(transactionId)

isConfirmed() checks for exact equality with the number of required confirmations.
Having too many confirmations is just as bad as too few:

code/contracts/multisig/contracts/src/MultiSigWallet.sol:L318-L335

/// @dev Returns the confirmation status of a transaction.
/// @aram transactionId Transaction ID.
/// @return Confirmation status.
function isConfirmed(uint256 transactionId)
public
view

returns (bool)

{
uint256 count = 0;
for (uint256 i = @; i < owners.length; i++) {
if (confirmations[transactionId][owners[i]]) {
count += 1;
3
if (count == required) {
return true;
3
3
3

If additional confirmations are required to reconfirm a transaction, that resets the time lock:

code/contracts/multisig/contracts/src/MultiSigWalletWithTimeLock.sol:L86-L100

/// @ev Allows an owner to confirm a transaction.

/// @aram transactionId Transaction ID.

function confirmTransaction(uint256 transactionId)
public
ownerExists(msg.sender)
transactionExists(transactionId)
notConfirmed(transactionId, msg.sender)

notFullyConfirmed(transactionId)

confirmations[transactionId][msg.sender] = true;

emit Confirmation(msg.sender, transactionId);

if (isConfirmed(transactionId)) {
_setConfirmationTime(transactionld, block.timestamp);

Recommendation

As inissue 6.1, the semantics of the original MultiSigWallet were that once a
transaction is fully confirmed, it's immediately executed. The time lock means this is no
longer possible, but it is possible to record that the transaction is confirmed and never
allow this to change. In fact, the confirmation time already records this. Once the
confirmation time is non-zero, a transaction should always be considered confirmed.

6.4 Reentrancy in executeTransaction() Medium Won't Fix

Resolution

From the development team:

e Reentrancy would be dangerous in executeTransaction if combined
with updating the currentContextAddress . However, this is is
prevented by checking currentContextAddress_ != address(0) when
validating a transaction.

e executeTransaction also inherits a lot of the safety from the
reentrancy protection on other individual functions in the Exchange
contract.

e Setting transactionsExecuted before making the delegatecall also
prevents the same transaction from being executed multiple times.

Description

In MixinTransactions , executeTransaction() and batchExecuteTransactions() do
not have the nonReentrant modifier. Because of that, it is possible to execute nested
transactions or call these functions during other reentrancy attacks on the exchange. The
reason behind that decision is to be able to call functions with nonReentrant modifier as
delegated transactions.

Nested transactions are partially prevented with a separate check that does not allow
transaction execution if the exchange is currently in somebody else’s context:

code/contracts/exchange/contracts/src/MixinTransactions.sol:L155-L162

// Prevent ‘executeTransaction’ from being called when context is already set
address currentContextAddress_ = currentContextAddress;
if (currentContextAddress_ != address(0)) {
LibRichErrors.rrevert(LibExchangeRichErrors.TransactionInvalidContextErrol
transactionHash,

currentContextAddress_

));

This check still leaves some possibility of reentrancy. Allowing that behavior is dangerous
and may create possible attack vectors in the future.

Recommendation

Add a new modifier to executeTransaction() and batchExecuteTransactions() which
is similar to nonReentrant but uses different storage slot.

6.5 “Poison” order that consumes gas can block market trades
Medium Won't Fix

Resolution

From the development team:

This can be prevented fairly easily by performing an eth_call off-chain
before attempting to fill any orders (which is pretty standard practice). Hard
coding gas limits reduces flexibility and may ultimately prevent some use
cases from developing in the future.

(Note from the audit team: Hardcoding is not necessary. A parameter would do.)

Description

The market buy/sell functions gather a list of orders together for the same asset and try to
fill them in order until a target amount has been traded.

These functions use MixinWrapperFunctions._fillOrderNoThrow() to attempt to fil
each order but ignore failures. This way, if one order is unfillable for some reason, the
overall market order can still succeed by filling other orders.

Orders can still force _fillOrderNoThrow() to revert by using an external contract for
signature validation and having that contract consume all available gas.

This makes it possible to advertise a “poison” order for a low price that will block all market
orders from succeeding. It's reasonable to assume that off-chain order books will
automatically include the best prices when constructing market orders, so this attack
would likely be quite effective. Note that such an attack costs the attacker nothing because
all they need is an on-chain contract that consumers all available gas (maybe via an

assert). This makes it a very appealing attack vector for, e.g., an order book that wants to
temporarily disable a competitor.

Details

_fillorderNoThrow() forwards all available gas when filling the order:

code/contracts/exchange/contracts/src/MixinWrapperFunctions.sol:L340-L348

// ABI encode calldata for 'fillOrder’

bytes memory fillOrderCalldata = abi.encodeWithSelector(
IExchangeCore(address(@)).fillOrder.selector,
order,
takerAssetFillAmount,

signature

);

(bool didSucceed, bytes memory returnData) = address(this).delegatecall(fillO:

Similarly, when the Exchange attempts to fill an order that requires external signature
validation (Wallet , Validator ,or EIP1271Wallet signature types), it forwards all
available gas:

code/contracts/exchange/contracts/src/MixinSignatureValidator.sol:L642

(bool didSucceed, bytes memory returnData) = verifyingContractAddress.staticc:

If the verifying contract consumes all available gas, it can force the overall transaction to
revert.

Pedantic Note

Technically, it's impossible to consume all remaining gas when called by another contract
because the EVM holds back a small amount, but even at the block gas limit, the amount
held back would be insufficient to complete the transaction.

Recommendation

Constrain the gas that is forwarded during signature validation. This can be constrained
either as a part of the signature or as a parameter provided by the taker.

6.6 Front running in matchOrders() Medium Won't Fix

Resolution

From the development team:

e Front-running is typically prevented with a combination of external
contracts and various off-chain mechanics.

e These functions are primarily intended to be used with ‘matching
relayers”. In this model, orders must set their takerAddress or

senderAddress to the address of the matcher, who is the only party
allowed to actually fill the orders. This prevents any other address from
participating in a gas auction.

o A commit-reveal scheme would be difficult to take advantage of in
practice, since orders could be filled through a number of other functions
on the Exchange contract. All of these functions would have to adhere
to the commit-reveal scheme in order to be effective.

Description

Calls to matchOrders() are made to extract profit from the price difference between two
opposite orders: left and right.

code/contracts/exchange/contracts/src/MixinMatchOrders.sol:L106-L111

function matchOrders(
LibOrder.Order memory leftOrder,
LibOrder.Order memory rightOrder,
bytes memory leftSignature,
bytes memory rightSignature

The caller only pays protocol and transaction fees, so it's almost always profitable to front
run every call to matchOrders() . That would lead to gas auctions and would make
matchOrders() difficult to use.

Recommendation

Consider adding a commit-reveal scheme to matchOrders() to stop front running
altogether.

6.7 The Exchange owner should not be able to call
executeTransaction or batchExecuteTransaction Medium
Won't Fix

Resolution

From the development team:

While this is a minor inconsistency in the logic of these functions, it is in no
way dangerous. currentContextAddress is not used when calling any
admin functions, so the address of the transaction signer will be completely
disregarded.

Description

If the owner calls either of these functions, the resulting delegatecall can pass
onlyOwner modifiers even if the transaction signer is not the owner. This is because,

regardless of the contextAddress setthrough _executeTransaction ,the onlyOwner
modifier checks msg.sender .

Examples

1. _executeTransaction sets the context address to the signer address, which is not
msg.sender in this case:

code/contracts/exchange/contracts/src/MixinTransactions.sol:L102-L104

// Set the current transaction signer
address signerAddress = transaction.signerAddress;
_setCurrentContextAddressIfRequired(signerAddress, signerAddress);

2. The resulting delegatecall could target an admin function like this one:

code/contracts/exchange/contracts/src/MixinAssetProxyDispatcher.sol:L38-L61

/// @dev Registers an asset proxy to its asset proxy id.
/7 Once an asset proxy is registered, it cannot be unregistered.
/// @param assetProxy Address of new asset proxy to register.
function registerAssetProxy(address assetProxy)
external

onlyOwner

// Ensure that no asset proxy exists with current id.
bytes4 assetProxyld = IAssetProxy(assetProxy).getProxyId();
address currentAssetProxy = _assetProxies[assetProxylId];
if (currentAssetProxy != address(0)) {
LibRichErrors.rrevert(LibExchangeRichErrors.AssetProxyExistsErrort
assetProxyld,

currentAssetProxy

));

// Add asset proxy and log registration.
_assetProxies[assetProxylId] = assetProxy;
emit AssetProxyRegistered(

assetProxylId,

assetProxy

);

3. The onlyOowner modifier does not check the context address, but checks

msg.sender :

code/contracts/utils/contracts/src/Ownable.sol:L35-L45

function _assertSenderIsOwner()

internal
view
{
if (msg.sender != owner) {
LibRichErrors.rrevert(LibOwnableRichErrors.OnlyOwnerError(
msg.sender,
owner
));
3
}

Recommendation

Add a check to _executeTransaction that prevents the owner from calling this function.

6.8 Anyone can front run MixinExchangeCore.cancelOrder() Medium
Won't Fix

Resolution

From the development team:

e Front-running is typically prevented with a combination of external
contracts and various off-chain mechanics.
e [tis not possible to cancel an order by providing less data to the
cancelOrder function without drastically changing the logic of the fill
functions. However, this type of behavior could possibly be enforced by

using external contracts that are set to the senderAddress of the
related orders.

Description

In order to cancel an order, an authorized address (maker or sender) calls
cancelOrder(LibOrder.Order memory order) . When calling that function, all data for the

order becomes visible to everyone on the network, and anyone can fill that order before it's
canceled.

Usually, a maker is canceling an order because it's no longer profitable for them, so an
attacker is likely to profit from front running the cancelOrder() transaction.

Recommendation

Make it impossible to front run order cancelation by providing less data to the
cancelOrder() function such that this data is insufficient to execute the order.

6.9 By manipulating the gas limit, relayers can affect the outcome of
ZeroExTransaction s Won't Fix

Resolution

From the development team:

While this is an annoyance when used in combination with
marketBuyOrdersNoThrow and marketSellOrdersNoThrow , it does not
seem worth itto add a gasLimit to Ox transactions for this reason alone.
Instead, this quirk should be documented along with a recommendation to
use the fillorkill variants of each market fill function when used in

combination with Ox transactions.

Description

ZeroExTransaction s are meta transactions supported by the Exchange . They do not
require that they are executed with a specific amount of gas, so the transaction relayer can
choose how much gas to provide. By choosing a low gas limit, a relayer can affect the
outcome of the transaction.

A ZeroExTransaction specifies a signer, an expiration, and call data for the transaction:

code/contracts/exchange-libs/contracts/src/LibZeroExTransaction.sol:L41-L47

struct ZeroExTransaction {
uint256 salt; // Arbitrary number to ensure uniqueness «

uint256 expirationTimeSeconds; // Timestamp in seconds at which transact.

uint256 gasPrice; // gasPrice that transaction is required
address signerAddress; // Address of transaction signer.
bytes data; // AbiV2 encoded calldata.

In MixinTransactions._executeTransaction() , all available gas is forwarded in the
delegate call, and the transaction is marked as executed:

code/contracts/exchange/contracts/src/MixinTransactions.sol:L107-L108

transactionskExecuted[transactionHash] = true;
(bool didSucceed, bytes memory returnData) = address(this).delegatecall(trans:

Examples

A likely attack vector for this is front running a ZeroExTransaction that ultimately invokes

_fillNoThrow() . In this scenario, an attacker sees the call to executeTransaction()
and makes their own call with a lower gas limit, causing the order being filled to run out of
gas but allowing the transaction as a whole to succeed.

If such an attack is successful, the ZeroExTransaction cannot be replayed, so the signer
must produce a new signature and try again, ad infinitum.

Recommendation

Add a gasLimit field to ZeroExTransaction and forward exactly that much gas via
delegatecall . (Note that you must explicitly check that sufficient gas is available

because the EVM allows you to supply a gas parameter that exceeds the actual remaining
gas.)

6.10 Front running market orders Won't Fix

Resolution

From the development team:

e Front-running is typically prevented with a combination of external
contracts and various off-chain mechanics.

e Users should always understand the risk of using market orders in any
market or exchange structure. Although they increase convenience and
arguably have a better UX, they almost always carry more risk than other
order types.

e Users can always enforce a worst price by padding a market fill with an
appropriate number of orders that do not exceed the worst acceptable
price.

Description

MixinWrapperFunctions defines a number of functions for market buy/sell orders. These
functions take a list of orders and a target asset amount to buy or sell. They fill each order
in turn until the target has been reached.

These functions provide an appealing opportunity for front running because of the near-
guaranteed profit to be had. This is most easily explained with an example:

1. Alice wishes to buy 10 FOO tokens. She creates a market buy order to purchase
tokens first from Bob, who is selling 4 FOO tokens at $S9 each, and then from Eve, who
is selling 20 tokens at $10 each.

2. Eve front runs this market order with a transaction that buys all 4 FOO tokens from
Bob for $9 each.

3. Alice’s transaction goes through, but because Bob's inventory has been depleted, all 10
FOO tokens are purchased from Eve at a price of $S10 each. By front running, Eve
gained $4.

In a more traditional front running scheme, Alice would have just been trying to make a
simple purchase of FOO tokens at $9 each, and Eve would be taking on non-trivial risk by
buying them first and hoping Alice (or another buyer) would be willing to pay a higher price
later.

With a market order, however, Eve's front running is nearly risk free because she knows the
market order already commits Alice to buying at the higher price.

Recommendation

For the most part, traders will simply have to understand the risks of market orders and
take care to only authorize trades they will be happy with.

That said, each order in a market order could specify a maximum quantity, e.g. “l want 10
FOO tokens, and I'm willing to buy up to 10 from Bob but only up to 5 from Eve.” This would
limit the trader’s exposure to increased prices due to front running, but it would retain the
convenience and efficiency of market orders.

6.11 Modifier ordering plays a significant role in modifier efficacy
v Fixed

Resolution

This is fixed in 0xProject/0Ox-monorepo#2228 by introducing a new modifier that
combines the two: refundFinalBalance .

Description

The nonReentrant and refundFinalBalance modifiers always appear together across
the Ox monorepo. When used, they invariably appear with nonReentrant listed first,
followed by refundFinalBalance . This specific order appears inconsequential at first
glance but is actually important. The order of execution is as follows:

1. The nonReentrant modifier runs (_lockMutexOrThrowIfAlreadylLocked).
2. If refundFinalBalance had a prefix, it would run now.
3. The function itself runs.

4. The refundFinalBalance modifier runs (_refundNonZeroBalanceIfEnabled).

https://github.com/0xProject/0x-monorepo/pull/2228

5. The nonReentrant modifier runs (_unlockMutex).

The fact that the refundFinalBalance modifier runs before the mutex is unlocked is of
particular importance because it potentially invokes an external call, which may reenter. If
the order of the two modifiers were flipped, the mutex would unlock before the external call,
defeating the purpose of the reentrancy guard.

Examples

code/contracts/exchange/contracts/src/MixinExchangeCore.sol:L64-L65

nonReentrant

refundFinalBalance

Recommendation

Although the order of the modifiers is correct as-is, this pattern introduces cognitive
overhead when making or reviewing changes to the Ox codebase. Because the two
modifiers always appear together, it may make sense to combine the two into a single
modifier where the order of operations is explicit.

6.12 Several overflows in LibBytes v Addressed

Resolution

This is addressed in OxProject/0x-monorepo#2265. Unused functions have been
removed. The remaining functions are only used with safe parameters (ones
guaranteed not to overflow).

Description

Several functionsin LibBytes have integer overflows.

Examples

LibBytes. readBytesWithLength returns a pointertoa bytes array within an existing
bytes array at some given index . The length of the nested array is added to the given
index and checked against the parent array to ensure the data in the nested array is

https://github.com/0xProject/0x-monorepo/pull/2265

within the bounds of the parent. However, because the addition can overflow, the bounds
check can be bypassed to return an array that points to data out of bounds of the parent
array.

code/contracts/utils/contracts/src/LibBytes.sol:L546-L553

if (b.length < index + nestedBytesLength) {
LibRichErrors.rrevert(LibBytesRichErrors.InvalidByteOperationError(
LibBytesRichErrors
.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsNestedBy1
b.length,
index + nestedByteslLength

));

The following functions have similar issues:

e readAddress
e writeAddress
e readBytes32
e writeBytes32
e readBytes4

Recommendation

An overflow check should be added to the function. Alternatively, because
readBytesWithLength does not appear to be used anywhere in the Ox project, the
function should be removed from LibBytes . Additionally, the following functions in

LibBytes are also not used and should be considered for removal:

e poplLast20Bytes

e writeAddress

e writeBytes32

e writeUint256

e writeBytesWithLength
e deepCopyBytes

6.13 NSignatureTypes enum value bypasses Solidity safety checks
Won't Fix

Resolution

From the development team:

This has been left unchanged in order to provide more context with a revert
when an invalid signature type is used.

Description

The ISignatureValidator contract definesanenum SignatureType to representthe
different types of signatures recognized within the exchange. The final enum value,
NSignatureTypes , is not a valid signature type. Instead, it is used by
MixinSignatureValidator to check that the value read from the signature is a valid
enum value. However, Solidity now includes its own check for enum casting, and casting a
value over the maximum enum size to an enum is no longer possible.

Because of the added NSignatureTypes value, Solidity’s check now recognizes 0x08 as
avalid SignatureType value.

Examples
The check is made here:

code/contracts/exchange/contracts/src/MixinSignatureValidator.sol:L441-L449

// Ensure signature is supported
if (uint8(signatureType) >= uint8(SignatureType.NSignatureTypes)) {
LibRichErrors.rrevert(LibExchangeRichErrors.SignatureError(
LibExchangeRichErrors.SignatureErrorCodes.UNSUPPORTED,
hash,
signerAddress,

signature

));

Recommendation

The check should be removed, as should the SignatureTypes.NSignatureTypes value.

7 Tool-Based Analysis

Several tools were used to perform automated analysis of the reviewed contracts. These
issues were reviewed by the audit team, and relevant issues are listed in the Issues section.

7.1 MythX

MythX is a security analysis API for Ethereum smart contracts. It
performs multiple types of analysis, including fuzzing and symbolic
execution, to detect many common vulnerability types. The tool was
used for automated vulnerability discovery for all audited contracts and
libraries. More details on MythX can be found at mythx.io.

The full set of MythX results for both the exchange and staking contracts are available in a
separate report.

7.2 Surya

Surya is an utility tool for smart contract systems. It provides a number of visual outputs
and information about structure of smart contracts. It also supports querying the function
call graph in multiple ways to aid in the manual inspection and control flow analysis of
contracts.

Below is a complete list of functions with their visibility and modifiers:
Surya's Description Report

Files Description Table

File Name SHA-1 Hash
exchange/contracts/src/Exchange.sol cb6733¢c32d3306348791b83a9%:«
exchange/contracts/src/MixinAssetProxyDispatcher.sol ee5492092ebea3397d53163cad!

exchange/contracts/src/MixinExchangeCore.sol 87f9d192c0d75569ee95705baac

https://mythx.io/
https://github.com/ConsenSys/0x-v3-mythx-report

File Name
exchange/contracts/src/MixinMatchOrders.sol
exchange/contracts/src/MixinProtocolFees.sol
exchange/contracts/src/MixinSignatureValidator.sol
exchange/contracts/src/MixinTransactions.sol
exchange/contracts/src/MixinTransferSimulator.sol
exchange/contracts/src/MixinWrapperFunctions.sol
exchange/contracts/src/interfaces/IAssetProxy.sol
exchange/contracts/src/interfaces/IAssetProxyDispatcher.sol
exchange/contracts/src/interfaces/IEIP1271Data.sol
exchange/contracts/src/interfaces/IEIP1271Wallet.sol
exchange/contracts/src/interfaces/IExchange.sol
exchange/contracts/src/interfaces/IExchangeCore.so
exchange/contracts/src/interfaces/IMatchOrders.sol
exchange/contracts/src/interfaces/IProtocolFees.sol
exchange/contracts/src/interfaces/ISignatureValidator.sol
exchange/contracts/src/interfaces/ITransactions.sol
exchange/contracts/src/interfaces/ITransferSimulator.sol
exchange/contracts/src/interfaces/IWallet.sol
exchange/contracts/src/interfaces/IWrapperFunctions.sol
exchange/contracts/src/libs/LibExchangeRichErrorDecoder.so
exchange-libs/contracts/src/IWallet.sol
exchange-libs/contracts/src/LibEIP712ExchangeDomain.sol
exchange-libs/contracts/src/LibExchangeRichErrors.sol
exchange-libs/contracts/src/LibFillResults.sol
exchange-libs/contracts/src/LibMath.sol
exchange-libs/contracts/src/LibMathRichErrors.sol

exchange-libs/contracts/src/LibOrder.sol

SHA-1 Hash
42868be4aea9327a636766682al
4982d287aaa206897698039fb3<
ab9bf0916642b2abaf7e2705d70
c3108f751ef627e171ad35c445¢!
b3ceb9d2e4a8cc1c55648548b9¢
69ea’/edd94fc6fd1edebeHbadl 3¢
21860cebd0fe6286966dab04b3<
f3022084eee2e1a87d4bc023d2a
3e98264aa000a238a3f954b17ac
d99b3b52044chab15aleebbeet;
82d342133abh823431dc0725585
48b0562a46653734202a40cc2c¢
db34eec2bf4bc41c3b51ec35803
bcc0151ed53fa72a87102f18015
e2304c3b8612ec7b7899d163b8:
a2f67b8a%e047c0dc7c33efdad?:
02ea8f864e3277e1f7c30e0eal38:
81fbaee73e754cfbc57882e1cd8”
d1b20adfadb2639aff21e8a0d8f8
02¢13f0e1c57b12da14b0384bek
d3c769706e00d8a68175a261d7¢
823955e1f1b21a34ad3fda91c7e!
e58712deb5e18edfe951ea694124
49422e7a81067b52f6acc8febde’
cabe24ec1de03bdea83351ce59
7f3b0be62d7a8d6f3026018aad0

114be366ad7a0a711a0c2e5525(

File Name
exchange-libs/contracts/src/LibZeroExTransaction.sol
multisig/contracts/src/AssetProxyOwner.sol
multisig/contracts/src/MultiSigWallet.sol
multisig/contracts/src/MultiSigWalletWithTimelLock.sol
utils/contracts/src/Authorizable.sol
utils/contracts/src/LibAddress.sol
utils/contracts/src/LibAddressArray.sol
utils/contracts/src/LibAddressArrayRichErrors.sol
utils/contracts/src/LibAuthorizableRichErrors.sol
utils/contracts/src/LibBytes.sol
utils/contracts/src/LibBytesRichErrors.sol
utils/contracts/src/LibEIP1271.s0l
utils/contracts/src/LIbEIP712.s0l
utils/contracts/src/LibFractions.sol
utils/contracts/src/LibOwnableRichErrors.sol
utils/contracts/src/LibReentrancyGuardRichErrors.sol
utils/contracts/src/LibRichErrors.sol
utils/contracts/src/LibSafeMath.sol
utils/contracts/src/LibSafeMathRichErrors.sol
utils/contracts/src/Ownable.sol
utils/contracts/src/ReentrancyGuard.sol
utils/contracts/src/Refundable.sol
utils/contracts/src/SafeMath.sol
utils/contracts/src/interfaces/IAuthorizable.sol

utils/contracts/src/interfaces/IOwnable.sol

Contracts Description Table

SHA-1 Hash
05ea4427d1df12aef259e07ac62
df9ed7cba84c1362fee9de80d77°
33b84d070486847dcc86a140fde
c54d8b6631each20febbfadbeet
2ae731a21730cfdd30feb5d20da:
33eef1855488fbbbfd1eed92101f
b13d0359922c04fadb4b24abd3c
883bc123bab99balefc11a75f80!
abfba41b1c63ba91803721d4d0e
7a0c37b1577f5a12378fbf52917"
611b4e660351ee4e24140074ee”
2fe0c70163677ea228d9bcfecdbt
3b486180d6ee3eb6d5e1f2fab7¢c i
552a637f32edb135942cd1ea25e
dfda0c5639f5fc994712421dc92t
8af2504839d0b9a4a7a46948867
3be89d9503f6fbb6aee08aa51511"
f095f7330b0d2b0d85370b47bd5
7785c4a4076e3f0be3319ec4bc
8ede7b82d2ee0ed63b2162709d¢
5364694b8a2bba36861bfdd8d5¢
0fe9acae963bb683b6c3539de83
5b675f9c12bf862a72¢c7dc71d00
3a438f74bdb79cfobff4dbe52a3

5fe3a74b7d5948bba5644db6844

Contract

L

Exchange

MixinAssetProxyDispatcher

MixinExchangeCore

Type

Function Name

Implementation

<Constructor>

Implementation

registerAssetProxy
getAssetProxy

_dispatchTransferFrom

Implementation

cancelOrdersUpTo
fillOrder
cancelOrder
getOrderInfo
_fillOrder
_cancelOrder
_updateFilledState
_updateCancelledState
_assertFillableOrder
_assertValidCancel

_settleOrder

_getOrderHashAndFilledAmount

LibE

Mi

[Exc
LibE
Mixi

Contract

MixinMatchOrders

MixinProtocolFees

L

L

MixinSignatureValidator

Type
Implementation

batchMatchOrders
batchMatchOrdersWithMaximalFill
matchOrders
matchOrdersWithMaximalFill
_assertValidMatch
_batchMatchOrders
_matchOrders

_settleMatchedOrders

Implementation IP
setProtocolFeeMultiplier
setProtocolFeeCollectorAddress
_paySingleProtocolFee
_payTwoProtocolFees

_payProtocolFeeToFeeCollector

LibE

Implementation

preSign
setSignatureValidatorApproval
isValidHashSignature
isValidOrderSignature
isValidTransactionSignature

_isValidOrderWithHashSignature

_isValidTransactionWithHashSignature

Contract

L

L

MixinTransactions

MixinTransferSimulator

L

MixinWrapperFunctions

Type
_validateHashSignatureTypes
_readSignatureType
_readValidSignatureType
_encodeEIP12710rderWithHash
_encodeEIP1271 TransactionWithHash
_validateHashWithWallet
_validateBytesWithWallet

_validateBytesWithValidator

_staticCallEIP1271WalletWithReducedSignatureLength

. LibE
Implementation

executeTransaction
batchExecuteTransactions
_executeTransaction
_assertkxecutableTransaction
_setCurrentContextAddresslIfRequired

_getCurrentContextAddress

Implementation Mixi

simulateDispatchTransferFromCalls

Implementation

fillOrKillOrder
batchFillOrders
batchFillOrKillOrders

batchFillOrdersNoThrow

Contract

L

L

|AssetProxy

L

L

IAssetProxyDispatcher

L

L

IEIP1271Data

L

L

IEIP1271Wallet

L

IExchange

IExchangeCore

Type
marketSellOrdersNoThrow
marketBuyOrdersNoThrow

marketSellOrdersFill OrKill
marketBuyOrdersFillOrKill
batchCancelOrders
_fillOrKillOrder

_fillOrderNoThrow

Implementation
transferFrom

getProxyld

Implementation
registerAssetProxy

getAssetProxy

Implementation
OrderWithHash

ZeroExTransactionWithHash

Implementation

isValidSignature

Implementation

Implementation

Contract

L
L
L

L

IMatchOrders

L
L
L

L

IProtocolFees

L
L
L

L

ISignatureValidator

L

L

ITransactions

L

L

Type
cancelOrdersUpTo
fillOrder
cancelOrder

getOrderinfo

Implementation
batchMatchOrders
batchMatchOrdersWithMaximalFill
matchOrders

matchOrdersWithMaximalFill

Implementation
setProtocolFeeMultiplier
setProtocolFeeCollectorAddress
protocolFeeMultiplier

protocolFeeCollector

Implementation
preSign
setSignatureValidatorApproval
isValidHashSignature
isValidOrderSignature
isValidTransactionSignature

_isValidOrderWithHashSignature

_isValidTransactionWithHashSignature

Implementation
executeTransaction

batchExecuteTransactions

Contract Type

L _getCurrentContextAddress
ITransferSimulator Implementation
L simulateDispatchTransferFromCalls
IWallet Implementation
L isValidSignature
IWrapperFunctions Implementation
L fillOrKillOrder
L batchFillOrders
L batchFillOrKillOrders
L batchFillOrdersNoThrow
L marketSellOrdersNoThrow
L marketBuyOrdersNoThrow
L marketSellOrdersFillOrKill
L marketBuyOrdersFillOrKill
L batchCancelOrders
LibExchangeRichErrorDecoder Implementation
L decodeSignatureError
L decodeEIP1271SignatureError
L decodeSignatureValidatorNotApprovedError
L decodeSignatureWalletError
L decodeOrderStatusError
L decodeExchangelnvalidContextError
L decodeFillError
L decodeOrderEpochError

L decodeAssetProxyExistsError

Contract

L

L

IWallet

L

LibEIP712ExchangeDomain

L

LibExchangeRichErrors

L

L

Type
decodeAssetProxyDispatchError
decodeAssetProxyTransferError

decodeNegativeSpreadError
decodeTransactionError
decodeTransactionExecutionError
decodelncompleteFillError

_assertSelectorBytes

Implementation

isValidSignature

Implementation

<Constructor>

Library
SignatureErrorSelector
SignatureValidatorNotApprovedErrorSelector
EIP1271SignaturekrrorSelector
SignatureWalletErrorSelector
OrderStatusErrorSelector
ExchangelnvalidContextErrorSelector
FillErrorSelector
OrderEpochErrorSelector
AssetProxyExistsErrorSelector
AssetProxyDispatchErrorSelector
AssetProxyTransferErrorSelector
NegativeSpreadErrorSelector
TransactionErrorSelector

TransactionExecutionErrorSelector

Contract Type

L IncompleteFillErrorSelector

L BatchMatchOrdersErrorSelector

L TransactionGasPriceErrorSelector

L TransactionlnvalidContextErrorSelector

L PayProtocolFeeErrorSelector

L BatchMatchOrdersError

L SignatureError

L SignatureValidatorNotApprovedError

L EIP1271SignatureError

L SignatureWalletError

L OrderStatusError

L ExchangelnvalidContextError

L FillError

L OrderEpochError

L AssetProxyExistsError

L AssetProxyDispatchError

L AssetProxyTransferError

L NegativeSpreadError

L TransactionError

L TransactionExecutionError

L TransactionGasPriceError

L TransactioninvalidContextError

L IncompleteFillError

L PayProtocolFeeError
LibFillResults Library

L calculateFillResults

Contract

L

L

LibMath

L

L

LibMathRichErrors

L

L

LibOrder

L

L

LibZeroExTransaction

L

L

TestLibEIP712ExchangeDomain

L

TestLibFillResults

Type
calculateMatchedFillResults
addFillResults
_calculateMatchedFillResults
_calculateMatchedFillResultsWithMaximalFill
_calculateCompleteFillBoth

_calculateCompleteRightFill

Library
safeGetPartialAmountFloor
safeGetPartialAmountCeil
getPartialAmountFloor
getPartialAmountCeil
isRoundingErrorFloor

isRoundingErrorCeil

Library
DivisionByZeroError

RoundingError

Library
getTypedDataHash

getStructHash

Library
getTypedDataHash

getStructHash

Implementation LibE

<Constructor>

Implementation

Contract

L
L

L

TestLibMath

L

L

TestLibOrder

L

L

TestLibZeroExTransaction

L

L

AssetProxyOwner

L

L

MultiSigWallet

L

L

Type
calculateFillResults
calculateMatchedFillResults

addFillResults

Implementation
safeGetPartialAmountFloor
safeGetPartialAmountCeil
getPartialAmountFloor
getPartialAmountCeil
isRoundingErrorFloor

isRoundingErrorCeil

Implementation
getTypedDataHash

getStructHash

Implementation
getTypedDataHash

getStructHash

Implementation
<Constructor>
registerFunctionCall
executeTransaction
_registerFunctionCall

_assertValidFunctionCall

Implementation
<Fallback>

<Constructor>

Mult

Contract Type

L addOwner

L removeOwner

L replaceOwner

L changeRequirement

L submitTransaction

L confirmTransaction

L revokeConfirmation

L executeTransaction

L _externalCall

L isConfirmed

L _addTransaction

L getConfirmationCount

L getTransactionCount

L getOwners

L getConfirmations

L getTransactionlds
MultiSigWalletWithTimeLock Implementation

L <Constructor>

L changeTimeLock

L confirmTransaction

Contract

Authorizable

L

L

LibAddress

L

LibAddressArray

L
L

L

LibAddressArrayRichErrors

L

LibAuthorizableRichErrors

L

L

Type

executeTransaction

_setConfirmationTime

Implementation
<Constructor>
addAuthorizedAddress
removeAuthorizedAddress
removeAuthorizedAddressAtindex
getAuthorizedAddresses
_assertSenderlsAuthorized
_addAuthorizedAddress

_removeAuthorizedAddressAtindex

Library

isContract

Library
append
contains

indexOf

Library

MismanagedMemoryError

Library
AuthorizedAddressMismatchError
IndexOutOfBoundsError
SenderNotAuthorizedError

TargetAlreadyAuthorizedError

Contract Type

L TargetNotAuthorizedError
L ZeroCantBeAuthorizedError
LibBytes Library
L rawAddress
L contentAddress
L memCopy
L slice
L sliceDestructive
L popLastByte
L equals
L readAddress
L writeAddress
L readBytes3?2
L writeBytes32
L readUint256
L writeUint256
L readBytes4
L writeLength
LibBytesRichErrors Library
L InvalidByteOperationError
LibEIP1271 Implementation
LibEIP712 Library
L hashEIP712Domain
L hashEIP712Message

LibFractions Library

Contract Type

L add
L normalize
L normalize
L scaleDifference
LibOwnableRichErrors Library
L OnlyOwnerError
L TransferOwnerToZeroError
LibReentrancyGuardRichErrors Library
L lllegalReentrancyError
LibRichErrors Library
L StandardError
L rrevert
LibSafeMath Library
L safeMul
L safeDiv
L safeSub
L safeAdd
L max256
L min256
LibSafeMathRichErrors Library
L Uint256BinOpError
L Uint256DowncastError
Ownable Implementation
L <Constructor>

L transferOwnership

Legend

Contract

L

ReentrancyGuard

L

L

Refundable

L

L

SafeMath

L

L

|Authorizable

L
L
L

L

IOwnable

L

Type

_assertSenderlsOwner

Implementation

_lockMutexOrThrowlfAlreadylLocked

_unlockMutex

Implementation
_refundNonZeroBalancelfEnabled
_refundNonZeroBalance
_disableRefund
_enableAndRefundNonZeroBalance

_areRefundsDisabled

Implementation
_safeMul
_safeDiv
_safeSub
_safeAdd
_Max256

_min256

Implementation
addAuthorizedAddress
removeAuthorizedAddress
removeAuthorizedAddressAtindex

getAuthorizedAddresses

Implementation

transferOwnership

Symbol Meaning
® Function can modify state

Es3 Function is payable

Appendix 1 - Disclosure

ConsenSys Diligence (“CD") typically receives compensation from one or more clients (the
“Clients”) for performing the analysis contained in these reports (the “Reports”). The
Reports may be distributed through other means, including via ConsenSys publications
and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and
the Reports do not guarantee the security of any particular project. This Report does not
consider, and should not be interpreted as considering or having any bearing on, the
potential economics of a token, token sale or any other product, service or other asset.
Cryptographic tokens are emergent technologies and carry with them high levels of
technical risk and uncertainty. No Report provides any warranty or representation to any
Third-Party in any respect, including regarding the bugfree nature of code, the business
model or proprietors of any such business model, and the legal compliance of any such
business. No third party should rely on the Reports in any way, including for the purpose of
making any decisions to buy or sell any token, product, service or other asset. Specifically,
for the avoidance of doubt, this Report does not constitute investment advice, is not
intended to be relied upon as investment advice, is not an endorsement of this project or
team, and it is not a guarantee as to the absolute security of the project. CD owes no duty
to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely
for Clients and published with their consent. The scope of our review is limited to a review
of Solidity code and only the Solidity code we note as being within the scope of our review
within this report. The Solidity language itself remains under development and is subject to
unknown risks and flaws. The review does not extend to the compiler layer, or any other
areas beyond Solidity that could present security risks. Cryptographic tokens are emergent
technologies and carry with them high levels of technical risk and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) — on
its website. CD hopes that by making these analyses publicly available, it can help the
blockchain ecosystem develop technical best practices in this rapidly evolving area of
innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other
computer links, gain access to web sites operated by persons other than ConsenSys and
CD. Such hyperlinks are provided for your reference and convenience only, and are the
exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are
not responsible for the content or operation of such Web sites, and that ConsenSys and CD
shall have no liability to you or any other person or entity for the use of third party Web
sites. Except as described below, a hyperlink from this web Site to another web site does
not imply or mean that ConsenSys and CD endorses the content on that Web site or the
operator or operations of that site. You are solely responsible for determining the extent to
which you may use any content at any other web sites to which you link from the Reports.
ConsenSys and CD assumes no responsibility for the use of third party software on the
Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date
appearing on the Report and is subject to change without notice. Unless indicated
otherwise, by ConsenSys and CD.

